These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34691724)

  • 1. Anomalous strain effect on the thermal conductivity of low-buckled two-dimensional silicene.
    Ding B; Li X; Zhou W; Zhang G; Gao H
    Natl Sci Rev; 2021 Sep; 8(9):nwaa220. PubMed ID: 34691724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First-Principles Prediction of Ultralow Lattice Thermal Conductivity of Dumbbell Silicene: A Comparison with Low-Buckled Silicene.
    Peng B; Zhang H; Shao H; Xu Y; Zhang R; Lu H; Zhang DW; Zhu H
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20977-85. PubMed ID: 27460331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phonon Thermal Transport in Silicene/Graphene Heterobilayer Nanostructures: Effect of Interlayer Interactions.
    Zhou J; Li H; Tang HK; Shao L; Han K; Shen X
    ACS Omega; 2022 Feb; 7(7):5844-5852. PubMed ID: 35224345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The disparate effect of strain on thermal conductivity of 2-D materials.
    Dheeraj KVS; Sathian SP
    Phys Chem Chem Phys; 2021 Oct; 23(40):23096-23105. PubMed ID: 34617094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bilateral substrate effect on the thermal conductivity of two-dimensional silicon.
    Zhang X; Bao H; Hu M
    Nanoscale; 2015 Apr; 7(14):6014-22. PubMed ID: 25762032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tensile strains give rise to strong size effects for thermal conductivities of silicene, germanene and stanene.
    Kuang YD; Lindsay L; Shi SQ; Zheng GP
    Nanoscale; 2016 Feb; 8(6):3760-7. PubMed ID: 26815838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disparate Strain Dependent Thermal Conductivity of Two-dimensional Penta-Structures.
    Liu H; Qin G; Lin Y; Hu M
    Nano Lett; 2016 Jun; 16(6):3831-42. PubMed ID: 27228130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anomalous temperature dependent thermal conductivity of two-dimensional silicon carbide.
    Islam ASMJ; Islam MS; Ferdous N; Park J; Bhuiyan AG; Hashimoto A
    Nanotechnology; 2019 Nov; 30(44):445707. PubMed ID: 31357179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of biaxial tensile strain on the first-principles-driven thermal conductivity of buckled arsenene and phosphorene.
    Taheri A; Da Silva C; Amon CH
    Phys Chem Chem Phys; 2018 Nov; 20(43):27611-27620. PubMed ID: 30371690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How Hydrodynamic Phonon Transport Determines the Convergence of Thermal Conductivity in Two-Dimensional Materials.
    Jiang J; Lu S; Ouyang Y; Chen J
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phonon thermal transport in silicene-germanene superlattice: a molecular dynamics study.
    Wang X; Hong Y; Chan PKL; Zhang J
    Nanotechnology; 2017 Jun; 28(25):255403. PubMed ID: 28486215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal Conductivity of Two Types of 2D Carbon Allotropes: a Molecular Dynamics Study.
    Li S; Ren H; Zhang Y; Xie X; Cai K; Li C; Wei N
    Nanoscale Res Lett; 2019 Jan; 14(1):7. PubMed ID: 30618012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of thermal conductivity in silicene nanomesh: insights from coherent and incoherent phonon transport.
    Cui L; Shi S; Li Z; Wei G; Du X
    Phys Chem Chem Phys; 2018 Oct; 20(42):27169-27175. PubMed ID: 30338327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strain-driven dynamic stability and anomalous enhancement of thermal conductivity in graphene-like IIA-VI monolayer monoxides.
    Xia C; Zhao Y; Ma D; Li X; Zhang L
    J Phys Condens Matter; 2020 Feb; 33(6):065701. PubMed ID: 33108766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orbitally driven low thermal conductivity of monolayer gallium nitride (GaN) with planar honeycomb structure: a comparative study.
    Qin Z; Qin G; Zuo X; Xiong Z; Hu M
    Nanoscale; 2017 Mar; 9(12):4295-4309. PubMed ID: 28295111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal conductivity of graphene under biaxial strain: an analysis of spectral phonon properties.
    K V S D; Kannam SK; Sathian SP
    Nanotechnology; 2020 Aug; 31(34):345703. PubMed ID: 32369790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tensile strain and finite size modulation of low lattice thermal conductivity in monolayer TMDCs (HfSe
    Chen G; Bao W; Wang Z; Tang D
    Phys Chem Chem Phys; 2023 Mar; 25(13):9225-9237. PubMed ID: 36919457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of tensile strain and finite size on thermal conductivity in monolayer WSe
    Yuan K; Zhang X; Li L; Tang D
    Phys Chem Chem Phys; 2018 Dec; 21(1):468-477. PubMed ID: 30534676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low thermal conductivity of monolayer ZnO and its anomalous temperature dependence.
    Wang H; Qin G; Li G; Wang Q; Hu M
    Phys Chem Chem Phys; 2017 May; 19(20):12882-12889. PubMed ID: 28474040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal conductivity of a h-BCN monolayer.
    Zhang YY; Pei QX; Liu HY; Wei N
    Phys Chem Chem Phys; 2017 Oct; 19(40):27326-27331. PubMed ID: 28971201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.