BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34691831)

  • 1. Mapping intrinsic electromechanical responses at the nanoscale via sequential excitation scanning probe microscopy empowered by deep data.
    Huang B; Esfahani EN; Li J
    Natl Sci Rev; 2019 Jan; 6(1):55-63. PubMed ID: 34691831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resolving fine electromechanical structure of collagen fibrils via sequential excitation piezoresponse force microscopy.
    Jiang P; Huang B; Wei L; Yan F; Huang X; Li Y; Xie S; Pan K; Liu Y; Li J
    Nanotechnology; 2019 May; 30(20):205703. PubMed ID: 30699396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput sequential excitation for nanoscale mapping of electrochemical strain in granular ceria.
    Huang B; Esfahani EN; Yu J; Gerwe BS; Adler SB; Li J
    Nanoscale; 2019 Dec; 11(48):23188-23196. PubMed ID: 31778138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microscopic techniques bridging between nanoscale and microscale with an atomically sharpened tip - field ion microscopy/scanning probe microscopy/ scanning electron microscopy.
    Tomitori M; Sasahara A
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i11-i12. PubMed ID: 25359799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and implementation of sequential excitation module for high fidelity piezoresponse force microscopy.
    Song C; Huang B; Feng J; Li J
    Rev Sci Instrum; 2022 Aug; 93(8):083707. PubMed ID: 36050062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An artificial intelligence atomic force microscope enabled by machine learning.
    Huang B; Li Z; Li J
    Nanoscale; 2018 Dec; 10(45):21320-21326. PubMed ID: 30422134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applications of scanning probe-atomic force microscopy in nanobioelectronics.
    Choi E; Kim A; Son H; Pyo SG
    J Nanosci Nanotechnol; 2014 Jan; 14(1):924-31. PubMed ID: 24730309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Piezoelectricity of Bi
    Jia T; Yang L; Zhang J; Kimura H; Zhao H; Guo Q; Cheng Z
    Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Big, Deep, and Smart Data in Scanning Probe Microscopy.
    Kalinin SV; Strelcov E; Belianinov A; Somnath S; Vasudevan RK; Lingerfelt EJ; Archibald RK; Chen C; Proksch R; Laanait N; Jesse S
    ACS Nano; 2016 Oct; 10(10):9068-9086. PubMed ID: 27676453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy.
    Balke N; Jesse S; Yu P; Ben Carmichael ; Kalinin SV; Tselev A
    Nanotechnology; 2016 Oct; 27(42):425707. PubMed ID: 27631885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying Nanoscale Structure-Function Relationships Using Multimodal Atomic Force Microscopy, Dimensionality Reduction, and Regression Techniques.
    Kong J; Giridharagopal R; Harrison JS; Ginger DS
    J Phys Chem Lett; 2018 Jun; 9(12):3307-3314. PubMed ID: 29847944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Higher order harmonic detection for exploring nonlinear interactions with nanoscale resolution.
    Vasudevan RK; Okatan MB; Rajapaksa I; Kim Y; Marincel D; Trolier-McKinstry S; Jesse S; Valanoor N; Kalinin SV
    Sci Rep; 2013; 3():2677. PubMed ID: 24045269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "May the Force Be with You!" Force-Volume Mapping with Atomic Force Microscopy.
    Olubowale OH; Biswas S; Azom G; Prather BL; Owoso SD; Rinee KC; Marroquin K; Gates KA; Chambers MB; Xu A; Garno JC
    ACS Omega; 2021 Oct; 6(40):25860-25875. PubMed ID: 34660949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-Property Relationships in Atomic-Scale Junctions: Histograms and Beyond.
    Hybertsen MS; Venkataraman L
    Acc Chem Res; 2016 Mar; 49(3):452-60. PubMed ID: 26938931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enabling autonomous scanning probe microscopy imaging of single molecules with deep learning.
    Sotres J; Boyd H; Gonzalez-Martinez JF
    Nanoscale; 2021 May; 13(20):9193-9203. PubMed ID: 33885692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An instrumental approach to combining confocal microspectroscopy and 3D scanning probe nanotomography.
    Mochalov KE; Chistyakov AA; Solovyeva DO; Mezin AV; Oleinikov VA; Vaskan IS; Molinari M; Agapov II; Nabiev I; Efimov AE
    Ultramicroscopy; 2017 Nov; 182():118-123. PubMed ID: 28672183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linear and Nonlinear Optical Spectroscopy at the Nanoscale with Photoinduced Force Microscopy.
    Jahng J; Fishman DA; Park S; Nowak DB; Morrison WA; Wickramasinghe HK; Potma EO
    Acc Chem Res; 2015 Oct; 48(10):2671-9. PubMed ID: 26449563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative Electromechanical Atomic Force Microscopy.
    Collins L; Liu Y; Ovchinnikova OS; Proksch R
    ACS Nano; 2019 Jul; 13(7):8055-8066. PubMed ID: 31268678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling scanning probe microscope lateral dynamics using the probe-surface interaction signal.
    Okorafor M; Clayton GM
    Rev Sci Instrum; 2011 Mar; 82(3):033707. PubMed ID: 21456751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of surface stiffness and probe-sample dissipation using the band excitation method of atomic force microscopy: a numerical analysis.
    Kareem AU; Solares SD
    Nanotechnology; 2012 Jan; 23(1):015706. PubMed ID: 22155951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.