These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 34691905)

  • 1. The revival of thermal utilization from the Sun: interfacial solar vapor generation.
    Zhou L; Li X; Ni GW; Zhu S; Zhu J
    Natl Sci Rev; 2019 May; 6(3):562-578. PubMed ID: 34691905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial Solar Steam/Vapor Generation for Heating and Cooling.
    Li X; Xie W; Zhu J
    Adv Sci (Weinh); 2022 Feb; 9(6):e2104181. PubMed ID: 35018734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seawater Desalination by Interfacial Solar Vapor Generation Method Using Plasmonic Heating Nanocomposites.
    Xu Z; Rao N; Tang CY; Law WC
    Micromachines (Basel); 2020 Sep; 11(9):. PubMed ID: 32962173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Thermally Insulated and Superhydrophilic Corn Straw for Efficient Solar Vapor Generation.
    Zhang H; Li L; Jiang B; Zhang Q; Ma J; Tang D; Song Y
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16503-16511. PubMed ID: 32182429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A water supply tunable bilayer evaporator for high-quality solar vapor generation.
    Zhang X; Li T; Liao W; Chen D; Deng Z; Liu X; Shang B
    Nanoscale; 2022 Jun; 14(21):7913-7918. PubMed ID: 35593223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Efficiency Superheated Steam Generation for Portable Sterilization under Ambient Pressure and Low Solar Flux.
    Chang C; Tao P; Xu J; Fu B; Song C; Wu J; Shang W; Deng T
    ACS Appl Mater Interfaces; 2019 May; 11(20):18466-18474. PubMed ID: 31046219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mushrooms as Efficient Solar Steam-Generation Devices.
    Xu N; Hu X; Xu W; Li X; Zhou L; Zhu S; Zhu J
    Adv Mater; 2017 Jul; 29(28):. PubMed ID: 28520092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microvessel-Assisted Environmental Thermal Energy Extraction Enabling 24-Hour Continuous Interfacial Vapor Generation.
    Xu Y; Xu T; Wang J; Liu W; Wang J
    ChemSusChem; 2020 Dec; 13(24):6635-6642. PubMed ID: 33089612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning Transpiration by Interfacial Solar Absorber-Leaf Engineering.
    Zhuang S; Zhou L; Xu W; Xu N; Hu X; Li X; Lv G; Zheng Q; Zhu S; Wang Z; Zhu J
    Adv Sci (Weinh); 2018 Feb; 5(2):1700497. PubMed ID: 29619300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated Evaporator for Efficient Solar-Driven Interfacial Steam Generation.
    Chen J; Li B; Hu G; Aleisa R; Lei S; Yang F; Liu D; Lyu F; Wang M; Ge X; Qian F; Zhang Q; Yin Y
    Nano Lett; 2020 Aug; 20(8):6051-6058. PubMed ID: 32687372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial Radiation-Absorbing Hydrogel Film for Efficient Thermal Utilization on Solar Evaporator Surfaces.
    Meng S; Zha XJ; Wu C; Zhao X; Yang MB; Yang W
    Nano Lett; 2021 Dec; 21(24):10516-10524. PubMed ID: 34878275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailoring Nanoscale Surface Topography of Hydrogel for Efficient Solar Vapor Generation.
    Guo Y; Zhao F; Zhou X; Chen Z; Yu G
    Nano Lett; 2019 Apr; 19(4):2530-2536. PubMed ID: 30836007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Dimensional Porous Solar-Driven Interfacial Evaporator for High-Efficiency Steam Generation under Low Solar Flux.
    Chang C; Tao P; Fu B; Xu J; Song C; Wu J; Shang W; Deng T
    ACS Omega; 2019 Feb; 4(2):3546-3555. PubMed ID: 31459569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sustainable Solar Evaporation from Solute Surface via Energy Downconversion.
    Bian Y; Tian Y; Tang K; Li W; Zhao L; Yang Y; Ye J; Gu S
    Glob Chall; 2021 Jan; 5(1):2000077. PubMed ID: 33437527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. All-Cold Evaporation under One Sun with Zero Energy Loss by Using a Heatsink Inspired Solar Evaporator.
    Wu X; Wu Z; Wang Y; Gao T; Li Q; Xu H
    Adv Sci (Weinh); 2021 Apr; 8(7):2002501. PubMed ID: 33854876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber-Based, Double-Sided, Reduced Graphene Oxide Films for Efficient Solar Vapor Generation.
    Guo A; Ming X; Fu Y; Wang G; Wang X
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29958-29964. PubMed ID: 28816435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in Solar-Driven Hygroscopic Water Harvesting.
    Zhuang S; Qi H; Wang X; Li X; Liu K; Liu J; Zhang H
    Glob Chall; 2021 Jan; 5(1):2000085. PubMed ID: 33437528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A High-Performance Self-Regenerating Solar Evaporator for Continuous Water Desalination.
    Kuang Y; Chen C; He S; Hitz EM; Wang Y; Gan W; Mi R; Hu L
    Adv Mater; 2019 Jun; 31(23):e1900498. PubMed ID: 30989752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-contained Janus Aerogel with Antifouling and Salt-Rejecting Properties for Stable Solar Evaporation.
    Liu Z; Qing RK; Xie AQ; Liu H; Zhu L; Chen S
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):18829-18837. PubMed ID: 33849270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterned Surfaces for Solar-Driven Interfacial Evaporation.
    Luo Y; Fu B; Shen Q; Hao W; Xu J; Min M; Liu Y; An S; Song C; Tao P; Wu J; Shang W; Deng T
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7584-7590. PubMed ID: 30688056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.