These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34691953)

  • 41. Dual-band polarization convertor based on electromagnetically induced transparency (EIT) effect in all-dielectric metamaterial.
    Zhu L; Zhao X; Miao FJ; Ghosh BK; Dong L; Tao BR; Meng FY; Li WN
    Opt Express; 2019 Apr; 27(9):12163-12170. PubMed ID: 31052760
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Clicking in a killer whale habitat: narrow-band, high-frequency biosonar clicks of harbour porpoise (Phocoena phocoena) and Dall's porpoise (Phocoenoides dalli).
    Kyhn LA; Tougaard J; Beedholm K; Jensen FH; Ashe E; Williams R; Madsen PT
    PLoS One; 2013; 8(5):e63763. PubMed ID: 23723996
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Four-Mode Programmable Metamaterial Using Ternary Foldable Origami.
    Le DH; Lim S
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28554-28561. PubMed ID: 31310501
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Extreme stiffness hyperbolic elastic metamaterial for total transmission subwavelength imaging.
    Lee H; Oh JH; Seung HM; Cho SH; Kim YY
    Sci Rep; 2016 Apr; 6():24026. PubMed ID: 27040762
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bio-Inspired Pressure-Dependent Programmable Mechanical Metamaterial with Self-Sealing Ability.
    Ghavidelnia N; Slesarenko V; Speck O; Eberl C
    Adv Mater; 2024 Jul; 36(27):e2313125. PubMed ID: 38629439
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Funneling Spontaneous Emission into Waveguides via Epsilon-Near-Zero Metamaterials.
    Channab M; Pirri CF; Angelini A
    Nanomaterials (Basel); 2021 May; 11(6):. PubMed ID: 34071754
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A comparison of the role of beamwidth in biological and engineered sonar.
    Todd BD; Müller R
    Bioinspir Biomim; 2017 Dec; 13(1):016014. PubMed ID: 29130894
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Magnetoelastic metamaterials.
    Lapine M; Shadrivov IV; Powell DA; Kivshar YS
    Nat Mater; 2011 Nov; 11(1):30-3. PubMed ID: 22081080
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ultra-thin infrared metamaterial detector for multicolor imaging applications.
    Montoya JA; Tian ZB; Krishna S; Padilla WJ
    Opt Express; 2017 Sep; 25(19):23343-23355. PubMed ID: 29041635
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metadevices with Potential Practical Applications.
    Li Y; Lv J; Gu Q; Hu S; Li Z; Jiang X; Ying Y; Si G
    Molecules; 2019 Jul; 24(14):. PubMed ID: 31336634
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Plate-type elastic metamaterials for low-frequency broadband elastic wave attenuation.
    Li Y; Zhu L; Chen T
    Ultrasonics; 2017 Jan; 73():34-42. PubMed ID: 27597307
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Exploiting the leaky-wave properties of transmission-line metamaterials for single-microphone direction finding.
    Esfahlani H; Karkar S; Lissek H; Mosig JR
    J Acoust Soc Am; 2016 Jun; 139(6):3259. PubMed ID: 27369150
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Holey-structured tungsten metamaterials for broadband ultrasonic sub-wavelength imaging in water.
    Astolfi L; Hutchins DA; Thomas PJ; Watson RL; Nie L; Freear S; Clare AT; Ricci M; Laureti S
    J Acoust Soc Am; 2021 Jul; 150(1):74. PubMed ID: 34340517
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inverse Doppler Effects in Broadband Acoustic Metamaterials.
    Zhai SL; Zhao XP; Liu S; Shen FL; Li LL; Luo CR
    Sci Rep; 2016 Aug; 6():32388. PubMed ID: 27578317
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spider Web-Inspired Lightweight Membrane-Type Acoustic Metamaterials for Broadband Low-Frequency Sound Isolation.
    Huang H; Cao E; Zhao M; Alamri S; Li B
    Polymers (Basel); 2021 Apr; 13(7):. PubMed ID: 33918439
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Asymmetric acoustic energy transport in non-Hermitian metamaterials.
    Thevamaran R; Branscomb RM; Makri E; Anzel P; Christodoulides D; Kottos T; Thomas EL
    J Acoust Soc Am; 2019 Jul; 146(1):863. PubMed ID: 31370575
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Highly tunable low frequency metamaterial cavity for vibration localization.
    Park HW; Seung HM; Choi W; Kim M; Oh JH
    Sci Rep; 2022 Jun; 12(1):9714. PubMed ID: 35690621
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Broadband Waterborne Multiphase Pentamode Metastructure with Simultaneous Wavefront Manipulation and Energy Absorption Capabilities.
    An Y; Zou H; Zhao A
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512325
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nonlinear acoustic fields in acoustic metamaterial based on a cylindrical pipe with periodically arranged side holes.
    Fan L; Ge H; Zhang SY; Gao HF; Liu YH; Zhang H
    J Acoust Soc Am; 2013 Jun; 133(6):3846-52. PubMed ID: 23742339
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.