These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34691953)

  • 61. Broadband Waterborne Multiphase Pentamode Metastructure with Simultaneous Wavefront Manipulation and Energy Absorption Capabilities.
    An Y; Zou H; Zhao A
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512325
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Nonlinear acoustic fields in acoustic metamaterial based on a cylindrical pipe with periodically arranged side holes.
    Fan L; Ge H; Zhang SY; Gao HF; Liu YH; Zhang H
    J Acoust Soc Am; 2013 Jun; 133(6):3846-52. PubMed ID: 23742339
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Recent Developments of Acoustic Energy Harvesting: A Review.
    Yuan M; Cao Z; Luo J; Chou X
    Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30641876
    [TBL] [Abstract][Full Text] [Related]  

  • 64. How can dolphins recognize fish according to their echoes? A statistical analysis of fish echoes.
    Yovel Y; Au WW
    PLoS One; 2010 Nov; 5(11):e14054. PubMed ID: 21124908
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A terahertz metamaterial with unnaturally high refractive index.
    Choi M; Lee SH; Kim Y; Kang SB; Shin J; Kwak MH; Kang KY; Lee YH; Park N; Min B
    Nature; 2011 Feb; 470(7334):369-73. PubMed ID: 21331038
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Novel Design Scheme for Structural Fundamental Frequency of Porous Acoustic Metamaterials.
    Zhou Y; Li H; Ye M; Shi Y; Gao L
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233911
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition.
    Lv TT; Li YX; Ma HF; Zhu Z; Li ZP; Guan CY; Shi JH; Zhang H; Cui TJ
    Sci Rep; 2016 Mar; 6():23186. PubMed ID: 27000427
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Tunable photo-responsive elastic metamaterials.
    Gliozzi AS; Miniaci M; Chiappone A; Bergamini A; Morin B; Descrovi E
    Nat Commun; 2020 May; 11(1):2576. PubMed ID: 32444601
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Broadband electromagnetic cloaking with smart metamaterials.
    Shin D; Urzhumov Y; Jung Y; Kang G; Baek S; Choi M; Park H; Kim K; Smith DR
    Nat Commun; 2012; 3():1213. PubMed ID: 23169054
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Metamaterial Absorbers for Infrared Detection of Molecular Self-Assembled Monolayers.
    Ishikawa A; Tanaka T
    Sci Rep; 2015 Jul; 5():12570. PubMed ID: 26229011
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Fundamental modal properties of SRR metamaterials and metamaterial based waveguiding structures.
    Yang R; Xie Y; Yang X; Wang R; Chen B
    Opt Express; 2009 Apr; 17(8):6101-17. PubMed ID: 19365433
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Hydrogen sensing via anomalous optical absorption of palladium-based metamaterials.
    Hierro-Rodriguez A; Leite IT; Rocha-Rodrigues P; Fernandes P; Araujo JP; Jorge PA; Santos JL; Teixeira JM; Guerreiro A
    Nanotechnology; 2016 May; 27(18):185501. PubMed ID: 27003717
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Tailoring dispersion for broadband low-loss optical metamaterials using deep-subwavelength Inclusions.
    Jiang ZH; Yun S; Lin L; Bossard JA; Werner DH; Mayer TS
    Sci Rep; 2013; 3():1571. PubMed ID: 23535875
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Research on the reflection-type ELC-based optomechanical metamaterial.
    Zhou Y; Liu Y; Wang W; Chen D; Wei X; Li J; Huang Y; Wen G
    Opt Express; 2022 Feb; 30(4):5498-5511. PubMed ID: 35209511
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Ultranarrow-Band Wavelength-Selective Thermal Emission with Aperiodic Multilayered Metamaterials Designed by Bayesian Optimization.
    Sakurai A; Yada K; Simomura T; Ju S; Kashiwagi M; Okada H; Nagao T; Tsuda K; Shiomi J
    ACS Cent Sci; 2019 Feb; 5(2):319-326. PubMed ID: 30834320
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Transparent coupled membrane metamaterials with simultaneous microwave absorption and sound reduction.
    Song G; Zhang C; Cheng Q; Jing Y; Qiu C; Cui T
    Opt Express; 2018 Sep; 26(18):22916-22925. PubMed ID: 30184948
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A system for controlling the directivity of sound radiated from a structure.
    Kournoutos N; Cheer J
    J Acoust Soc Am; 2020 Jan; 147(1):231. PubMed ID: 32007020
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Compact Mid-Infrared Gas Sensing Enabled by an All-Metamaterial Design.
    Lochbaum A; Dorodnyy A; Koch U; Koepfli SM; Volk S; Fedoryshyn Y; Wood V; Leuthold J
    Nano Lett; 2020 Jun; 20(6):4169-4176. PubMed ID: 32343585
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Broadband Focusing Acoustic Lens Based on Fractal Metamaterials.
    Song GY; Huang B; Dong HY; Cheng Q; Cui TJ
    Sci Rep; 2016 Oct; 6():35929. PubMed ID: 27782216
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Thermal Metamaterial: Fundamental, Application, and Outlook.
    Wang J; Dai G; Huang J
    iScience; 2020 Oct; 23(10):101637. PubMed ID: 33103076
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.