These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34691954)

  • 1. Immobilization of functional nano-objects in living engineered bacterial biofilms for catalytic applications.
    Wang X; Pu J; Liu Y; Ba F; Cui M; Li K; Xie Y; Nie Y; Mi Q; Li T; Liu L; Zhu M; Zhong C
    Natl Sci Rev; 2019 Oct; 6(5):929-943. PubMed ID: 34691954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered catalytic biofilms: Site-specific enzyme immobilization onto E. coli curli nanofibers.
    Botyanszki Z; Tay PK; Nguyen PQ; Nussbaumer MG; Joshi NS
    Biotechnol Bioeng; 2015 Oct; 112(10):2016-24. PubMed ID: 25950512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programming Cells for Dynamic Assembly of Inorganic Nano-Objects with Spatiotemporal Control.
    Wang X; Pu J; An B; Li Y; Shang Y; Ning Z; Liu Y; Ba F; Zhang J; Zhong C
    Adv Mater; 2018 Apr; 30(16):e1705968. PubMed ID: 29516606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic Biogenesis of Bacterial Amyloid Nanomaterials with Tunable Inorganic-Organic Interfaces and Electrical Conductivity.
    Seker UO; Chen AY; Citorik RJ; Lu TK
    ACS Synth Biol; 2017 Feb; 6(2):266-275. PubMed ID: 27794590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and patterning of tunable multiscale materials with engineered cells.
    Chen AY; Deng Z; Billings AN; Seker UO; Lu MY; Citorik RJ; Zakeri B; Lu TK
    Nat Mater; 2014 May; 13(5):515-23. PubMed ID: 24658114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Programmable biofilm-based materials from engineered curli nanofibres.
    Nguyen PQ; Botyanszki Z; Tay PK; Joshi NS
    Nat Commun; 2014 Sep; 5():4945. PubMed ID: 25229329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineered tyrosinases with broadened bio-catalysis scope: immobilization using nanocarriers and applications.
    Hussain A; Rafeeq H; Qasim M; Jabeen Z; Bilal M; Franco M; Iqbal HMN
    3 Biotech; 2021 Aug; 11(8):365. PubMed ID: 34290948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational Design of Artificial Biofilms as Sustainable Supports for Whole-Cell Catalysis Through Integrating Extra- and Intracellular Catalysis.
    Dong H; Zhang W; Zhou S; Ying H; Wang P
    ChemSusChem; 2022 Sep; 15(17):e202200850. PubMed ID: 35726119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Printing of Patterned, Engineered E. coli Biofilms with a Low-Cost 3D Printer.
    Schmieden DT; Basalo Vázquez SJ; Sangüesa H; van der Does M; Idema T; Meyer AS
    ACS Synth Biol; 2018 May; 7(5):1328-1337. PubMed ID: 29690761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic biology engineering of biofilms as nanomaterials factories.
    Nguyen PQ
    Biochem Soc Trans; 2017 Jun; 45(3):585-597. PubMed ID: 28620023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding Peptide-Guided Immobilization of Lipases with Significantly Improved Catalytic Performance Using
    Dong H; Zhang W; Xuan Q; Zhou Y; Zhou S; Huang J; Wang P
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6168-6179. PubMed ID: 33499600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programmable and printable Bacillus subtilis biofilms as engineered living materials.
    Huang J; Liu S; Zhang C; Wang X; Pu J; Ba F; Xue S; Ye H; Zhao T; Li K; Wang Y; Zhang J; Wang L; Fan C; Lu TK; Zhong C
    Nat Chem Biol; 2019 Jan; 15(1):34-41. PubMed ID: 30510190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid enzyme regeneration results in the striking catalytic longevity of an engineered, single species, biocatalytic biofilm.
    Tong X; Barberi TT; Botting CH; Sharma SV; Simmons MJ; Overton TW; Goss RJ
    Microb Cell Fact; 2016 Oct; 15(1):180. PubMed ID: 27769259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering living functional materials.
    Chen AY; Zhong C; Lu TK
    ACS Synth Biol; 2015 Jan; 4(1):8-11. PubMed ID: 25592034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the amyloid dye Congo red on curli, cellulose, and the extracellular matrix in E. coli during growth and matrix purification.
    Reichhardt C; McCrate OA; Zhou X; Lee J; Thongsomboon W; Cegelski L
    Anal Bioanal Chem; 2016 Nov; 408(27):7709-7717. PubMed ID: 27580606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid Spider Silk with Inorganic Nanomaterials.
    Kiseleva AP; Kiselev GO; Nikolaeva VO; Seisenbaeva G; Kessler V; Krivoshapkin PV; Krivoshapkina EF
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32947954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformable self-assembling amyloid protein coatings with genetically programmable functionality.
    Li Y; Li K; Wang X; Cui M; Ge P; Zhang J; Qiu F; Zhong C
    Sci Adv; 2020 May; 6(21):eaba1425. PubMed ID: 32490204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Escherichia coli biofilms have an organized and complex extracellular matrix structure.
    Hung C; Zhou Y; Pinkner JS; Dodson KW; Crowley JR; Heuser J; Chapman MR; Hadjifrangiskou M; Henderson JP; Hultgren SJ
    mBio; 2013 Sep; 4(5):e00645-13. PubMed ID: 24023384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The gold standard: gold nanoparticle libraries to understand the nano-bio interface.
    Alkilany AM; Lohse SE; Murphy CJ
    Acc Chem Res; 2013 Mar; 46(3):650-61. PubMed ID: 22732239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds.
    Schreiber R; Do J; Roller EM; Zhang T; Schüller VJ; Nickels PC; Feldmann J; Liedl T
    Nat Nanotechnol; 2014 Jan; 9(1):74-8. PubMed ID: 24292513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.