These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 34692017)
61. Highly Durable and Fully Dispersed Cobalt Diatomic Site Catalysts for CO Wang J; Kim E; Kumar DP; Rangappa AP; Kim Y; Zhang Y; Kim TK Angew Chem Int Ed Engl; 2022 Feb; 61(6):e202113044. PubMed ID: 34750936 [TBL] [Abstract][Full Text] [Related]
62. Zero-Dimensional-g-CNQD-Coordinated Two-Dimensional Porphyrin MOF Hybrids for Boosting Photocatalytic CO Zheng C; Qiu X; Han J; Wu Y; Liu S ACS Appl Mater Interfaces; 2019 Nov; 11(45):42243-42249. PubMed ID: 31638762 [TBL] [Abstract][Full Text] [Related]
63. Crystalline Carbon Nitride Supported Copper Single Atoms for Photocatalytic CO Li Y; Li B; Zhang D; Cheng L; Xiang Q ACS Nano; 2020 Aug; 14(8):10552-10561. PubMed ID: 32806072 [TBL] [Abstract][Full Text] [Related]
64. Interpenetrating Metal-Metalloporphyrin Framework for Selective CO2 Uptake and Chemical Transformation of CO2. Gao WY; Tsai CY; Wojtas L; Thiounn T; Lin CC; Ma S Inorg Chem; 2016 Aug; 55(15):7291-4. PubMed ID: 27337152 [TBL] [Abstract][Full Text] [Related]
65. High selective photocatalytic CO Sadeghi N; Sillanpää M Photochem Photobiol Sci; 2021 Mar; 20(3):391-399. PubMed ID: 33721280 [TBL] [Abstract][Full Text] [Related]
66. Selective Photoreduction of CO Wu J; Zhu J; Fan W; He D; Hu Q; Zhu S; Yan W; Hu J; Zhu J; Chen Q; Jiao X; Xie Y Nano Lett; 2024 Jan; 24(2):696-702. PubMed ID: 38175193 [TBL] [Abstract][Full Text] [Related]
67. Facile Synthesis of Sub-Nanometric Copper Clusters by Double Confinement Enables Selective Reduction of Carbon Dioxide to Methane. Hu Q; Han Z; Wang X; Li G; Wang Z; Huang X; Yang H; Ren X; Zhang Q; Liu J; He C Angew Chem Int Ed Engl; 2020 Oct; 59(43):19054-19059. PubMed ID: 32686303 [TBL] [Abstract][Full Text] [Related]
68. Acid and Base Resistant Zirconium Polyphenolate-Metalloporphyrin Scaffolds for Efficient CO Chen EX; Qiu M; Zhang YF; Zhu YS; Liu LY; Sun YY; Bu X; Zhang J; Lin Q Adv Mater; 2018 Jan; 30(2):. PubMed ID: 29178432 [TBL] [Abstract][Full Text] [Related]
69. Metal-Organic-Framework-Based Catalysts for Photoreduction of CO Li R; Zhang W; Zhou K Adv Mater; 2018 Aug; 30(35):e1705512. PubMed ID: 29894012 [TBL] [Abstract][Full Text] [Related]
70. Highly efficient and selective photoreduction of CO Qin Y; Dong G; Zhang L; Li G; An T Environ Res; 2021 Apr; 195():110880. PubMed ID: 33607096 [TBL] [Abstract][Full Text] [Related]
71. Dual Engineering of Lattice Strain and Valence State of NiAl-LDHs for Photoreduction of CO Tan L; Sun X; Bai S; Song Z; Song YF Small; 2023 Mar; 19(11):e2205770. PubMed ID: 36635004 [TBL] [Abstract][Full Text] [Related]
72. Enhanced Cuprophilic Interactions in Crystalline Catalysts Facilitate the Highly Selective Electroreduction of CO Zhang L; Li XX; Lang ZL; Liu Y; Liu J; Yuan L; Lu WY; Xia YS; Dong LZ; Yuan DQ; Lan YQ J Am Chem Soc; 2021 Mar; 143(10):3808-3816. PubMed ID: 33651597 [TBL] [Abstract][Full Text] [Related]
73. Boosted Inner Surface Charge Transfer in Perovskite Nanodots@Mesoporous Titania Frameworks for Efficient and Selective Photocatalytic CO Sun QM; Xu JJ; Tao FF; Ye W; Zhou C; He JH; Lu JM Angew Chem Int Ed Engl; 2022 May; 61(20):e202200872. PubMed ID: 35191168 [TBL] [Abstract][Full Text] [Related]
74. Engineering the Surface of a Polymeric Photocatalyst for Stable Solar-to-Chemical Fuel Conversion from Seawater. Mishra B; Mishra S; Satpati B; Chaudhary YS ChemSusChem; 2019 Jul; 12(14):3383-3389. PubMed ID: 31124304 [TBL] [Abstract][Full Text] [Related]
75. Ag Nanoparticle-Modified Polyoxometalate-Based Metal-Organic Framework for Enhanced CO He YO; Fu YM; Meng X; Sun HX; Yang RG; Qu JX; Su ZM; Wang HN Inorg Chem; 2022 Jul; 61(29):11359-11365. PubMed ID: 35819880 [TBL] [Abstract][Full Text] [Related]
76. One-Pot Synthesis of Cu-Nanocluster-Decorated Brookite TiO Jin J; Luo J; Zan L; Peng T Chemphyschem; 2017 Nov; 18(22):3230-3239. PubMed ID: 28719067 [TBL] [Abstract][Full Text] [Related]
77. Stable and Efficient Single-Atom Zn Catalyst for CO Han L; Song S; Liu M; Yao S; Liang Z; Cheng H; Ren Z; Liu W; Lin R; Qi G; Liu X; Wu Q; Luo J; Xin HL J Am Chem Soc; 2020 Jul; 142(29):12563-12567. PubMed ID: 32536159 [TBL] [Abstract][Full Text] [Related]
78. A doping technique that suppresses undesirable H2 evolution derived from overall water splitting in the highly selective photocatalytic conversion of CO2 in and by water. Teramura K; Wang Z; Hosokawa S; Sakata Y; Tanaka T Chemistry; 2014 Aug; 20(32):9906-9. PubMed ID: 25044046 [TBL] [Abstract][Full Text] [Related]
79. Dual-nodes bridged cobalt-modified Keggin-type polyoxometalate-based chains for highly efficient CO Chen XL; Wu J; Wang JL; Liu XM; Mei H; Xu Y Dalton Trans; 2024 Aug; 53(31):12943-12950. PubMed ID: 39049578 [TBL] [Abstract][Full Text] [Related]
80. Polar Sulfone-Functionalized Oxygen-Rich Metal-Organic Frameworks for Highly Selective CO Chakraborty G; Das P; Mandal SK ACS Appl Mater Interfaces; 2020 Mar; 12(10):11724-11736. PubMed ID: 32011848 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]