These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Development of a Monte Carlo-wave model to simulate time domain diffuse correlation spectroscopy measurements from first principles. Cheng X; Chen H; Sie EJ; Marsili F; Boas DA J Biomed Opt; 2022 Feb; 27(8):. PubMed ID: 35199501 [TBL] [Abstract][Full Text] [Related]
3. Time domain diffuse correlation spectroscopy: modeling the effects of laser coherence length and instrument response function. Cheng X; Tamborini D; Carp SA; Shatrovoy O; Zimmerman B; Tyulmankov D; Siegel A; Blackwell M; Franceschini MA; Boas DA Opt Lett; 2018 Jun; 43(12):2756-2759. PubMed ID: 29905681 [TBL] [Abstract][Full Text] [Related]
4. Time domain diffuse correlation spectroscopy with a high coherence pulsed source: Pagliazzi M; Sekar SKV; Colombo L; Martinenghi E; Minnema J; Erdmann R; Contini D; Mora AD; Torricelli A; Pifferi A; Durduran T Biomed Opt Express; 2017 Nov; 8(11):5311-5325. PubMed ID: 29188122 [TBL] [Abstract][Full Text] [Related]
5. Diffuse correlation spectroscopy measurements of blood flow using 1064 nm light. Carp S; Tamborini D; Mazumder D; Wu KC; Robinson M; Stephens K; Shatrovoy O; Lue N; Ozana N; Blackwell M; Franceschini MA J Biomed Opt; 2020 Sep; 25(9):. PubMed ID: 32996299 [TBL] [Abstract][Full Text] [Related]
6. Effects of the instrument response function and the gate width in time-domain diffuse correlation spectroscopy: model and validations. Colombo L; Pagliazzi M; Sekar SKV; Contini D; Mora AD; Spinelli L; Torricelli A; Durduran T; Pifferi A Neurophotonics; 2019 Jul; 6(3):035001. PubMed ID: 31312668 [TBL] [Abstract][Full Text] [Related]
7. Time-domain diffuse correlation spectroscopy at large source detector separation for cerebral blood flow recovery. Mogharari N; Wojtkiewicz S; Borycki D; Liebert A; Kacprzak M Biomed Opt Express; 2024 Jul; 15(7):4330-4344. PubMed ID: 39022555 [TBL] [Abstract][Full Text] [Related]
8. Optimization of time domain diffuse correlation spectroscopy parameters for measuring brain blood flow. Mazumder D; Wu MM; Ozana N; Tamborini D; Franceschini MA; Carp SA Neurophotonics; 2021 Jul; 8(3):035005. PubMed ID: 34395719 [No Abstract] [Full Text] [Related]
9. Functional Time Domain Diffuse Correlation Spectroscopy. Ozana N; Lue N; Renna M; Robinson MB; Martin A; Zavriyev AI; Carr B; Mazumder D; Blackwell MH; Franceschini MA; Carp SA Front Neurosci; 2022; 16():932119. PubMed ID: 35979338 [TBL] [Abstract][Full Text] [Related]
10. In vivo time-domain diffuse correlation spectroscopy above the water absorption peak. Colombo L; Pagliazzi M; Konugolu Venkata Sekar S; Contini D; Durduran T; Pifferi A Opt Lett; 2020 Jul; 45(13):3377-3380. PubMed ID: 32630849 [TBL] [Abstract][Full Text] [Related]
11. Portable System for Time-Domain Diffuse Correlation Spectroscopy. Tamborini D; Stephens KA; Wu MM; Farzam P; Siegel AM; Shatrovoy O; Blackwell M; Boas DA; Carp SA; Franceschini MA IEEE Trans Biomed Eng; 2019 Nov; 66(11):3014-3025. PubMed ID: 30794161 [TBL] [Abstract][Full Text] [Related]
12. Time-domain diffuse correlation spectroscopy (TD-DCS) for noninvasive, depth-dependent blood flow quantification in human tissue in vivo. Samaei S; Sawosz P; Kacprzak M; Pastuszak Ż; Borycki D; Liebert A Sci Rep; 2021 Jan; 11(1):1817. PubMed ID: 33469124 [TBL] [Abstract][Full Text] [Related]