These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 34692187)

  • 41. Fourier domain diffuse correlation spectroscopy with heterodyne holographic detection.
    James E; Powell S
    Biomed Opt Express; 2020 Nov; 11(11):6755-6779. PubMed ID: 33282522
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vivo determination of local skin optical properties and photon path length by use of spatially resolved diffuse reflectance with applications in laser Doppler flowmetry.
    Larsson M; Nilsson H; Strömberg T
    Appl Opt; 2003 Jan; 42(1):124-34. PubMed ID: 12518831
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Performance optimisation of a holographic Fourier domain diffuse correlation spectroscopy instrument.
    James E; Powell S; Munro P
    Biomed Opt Express; 2022 Jul; 13(7):3836-3853. PubMed ID: 35991914
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia.
    Selb J; Boas DA; Chan ST; Evans KC; Buckley EM; Carp SA
    Neurophotonics; 2014 Jul; 1(1):. PubMed ID: 25453036
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Noninvasive quantification of postocclusive reactive hyperemia in mouse thigh muscle by near-infrared diffuse correlation spectroscopy.
    Cheng R; Zhang X; Daugherty A; Shin H; Yu G
    Appl Opt; 2013 Oct; 52(30):7324-30. PubMed ID: 24216586
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of probe pressure on the pulsatile diffuse correlation spectroscopy blood flow signal on the forearm and forehead regions.
    Wang D; Baker WB; He H; Gao P; Zhu L; Peng Q; Li Z; Li F; Chen T; Feng H
    Neurophotonics; 2019 Jul; 6(3):035013. PubMed ID: 31548976
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analytical models for time-domain diffuse correlation spectroscopy for multi-layer and heterogeneous turbid media.
    Li J; Qiu L; Poon CS; Sunar U
    Biomed Opt Express; 2017 Dec; 8(12):5518-5532. PubMed ID: 29296485
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Noncontact diffuse correlation spectroscopy for noninvasive deep tissue blood flow measurement.
    Lin Y; He L; Shang Y; Yu G
    J Biomed Opt; 2012 Jan; 17(1):010502. PubMed ID: 22352631
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Noninvasive optical assessment of resting-state cerebral blood flow in children with sickle cell disease.
    Lee SY; Cowdrick KR; Sanders B; Sathialingam E; McCracken CE; Lam WA; Joiner CH; Buckley EM
    Neurophotonics; 2019 Jul; 6(3):035006. PubMed ID: 31482101
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Deep tissue flowmetry based on diffuse speckle contrast analysis.
    Bi R; Dong J; Lee K
    Opt Lett; 2013 May; 38(9):1401-3. PubMed ID: 23632498
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [A study on blood flow measurement by diffuse correlation spectroscopy].
    Liang JM; Wang J; Mei JS; Zhang ZX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Oct; 32(10):2749-52. PubMed ID: 23285880
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol.
    Wabnitz H; Taubert DR; Mazurenka M; Steinkellner O; Jelzow A; Macdonald R; Milej D; Sawosz P; Kacprzak M; Liebert A; Cooper R; Hebden J; Pifferi A; Farina A; Bargigia I; Contini D; Caffini M; Zucchelli L; Spinelli L; Cubeddu R; Torricelli A
    J Biomed Opt; 2014 Aug; 19(8):086010. PubMed ID: 25121479
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Novel Noninvasive Assessment of Microvascular Structure and Function in Humans.
    Smith KJ; Argarini R; Carter HH; Quirk BC; Haynes A; Naylor LH; McKirdy H; Kirk RW; McLaughlin RA; Green DJ
    Med Sci Sports Exerc; 2019 Jul; 51(7):1558-1565. PubMed ID: 30688767
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Open-path tunable diode laser absorption spectroscopy for acquisition of fugitive emission flux data.
    Thoma ED; Shores RC; Thompson EL; Harris DB; Thorneloe SA; Varma RM; Hashmonay RA; Modrak MT; Natschke DF; Gamble HA
    J Air Waste Manag Assoc; 2005 May; 55(5):658-68. PubMed ID: 15991674
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Simultaneously extracting multiple parameters via fitting one single autocorrelation function curve in diffuse correlation spectroscopy.
    Dong L; He L; Lin Y; Shang Y; Yu G
    IEEE Trans Biomed Eng; 2013 Feb; 60(2):361-8. PubMed ID: 23193446
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Diffuse correlation spectroscopy: current status and future outlook.
    Carp SA; Robinson MB; Franceschini MA
    Neurophotonics; 2023 Jan; 10(1):013509. PubMed ID: 36704720
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Theoretical model of blood flow measurement by diffuse correlation spectroscopy.
    Sakadžic S; Boas DA; Carp S
    J Biomed Opt; 2017 Feb; 22(2):27006. PubMed ID: 28241276
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Contribution of speckle noise in near-infrared spectroscopy measurements.
    Ortega-Martinez A; Zimmermann B; Cheng X; Li X; Yucel MA; Boas DA
    J Biomed Opt; 2019 Oct; 24(10):1-6. PubMed ID: 31668028
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Validation of diffuse correlation spectroscopy sensitivity to nicotinamide-induced blood flow elevation in the murine hindlimb using the fluorescent microsphere technique.
    Proctor AR; Ramirez GA; Han S; Liu Z; Bubel TM; Choe R
    J Biomed Opt; 2018 Mar; 23(3):1-9. PubMed ID: 29595019
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Scanning laser image correlation for measurement of flow.
    Rossow MJ; Mantulin WW; Gratton E
    J Biomed Opt; 2010; 15(2):026003. PubMed ID: 20459248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.