These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 34692569)

  • 1. Bacterial Subversion of Autophagy in Cystic Fibrosis.
    Flores-Vega VR; Vargas-Roldán SY; Lezana-Fernández JL; Lascurain R; Santos-Preciado JI; Rosales-Reyes R
    Front Cell Infect Microbiol; 2021; 11():760922. PubMed ID: 34692569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AR-13 reduces antibiotic-resistant bacterial burden in cystic fibrosis phagocytes and improves cystic fibrosis transmembrane conductance regulator function.
    Assani K; Shrestha CL; Rinehardt H; Zhang S; Robledo-Avila F; Wellmerling J; Partida-Sanchez S; Cormet-Boyaka E; Reynolds SD; Schlesinger LS; Kopp BT
    J Cyst Fibros; 2019 Sep; 18(5):622-629. PubMed ID: 30366849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fibrosis quística: patogenia bacteriana y moduladores del CFTR (regulador de conductancia transmembranal de la fibrosis quística).
    Vargas-Roldán SY; Lezana-Fernández JL; Cerna-Cortés JF; Partida-Sánchez S; Santos-Preciado JI; Rosales-Reyes R
    Bol Med Hosp Infant Mex; 2022; 79(4):215-221. PubMed ID: 36100204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cysteamine re-establishes the clearance of Pseudomonas aeruginosa by macrophages bearing the cystic fibrosis-relevant F508del-CFTR mutation.
    Ferrari E; Monzani R; Villella VR; Esposito S; Saluzzo F; Rossin F; D'Eletto M; Tosco A; De Gregorio F; Izzo V; Maiuri MC; Kroemer G; Raia V; Maiuri L
    Cell Death Dis; 2017 Jan; 8(1):e2544. PubMed ID: 28079883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Depletion of the ubiquitin-binding adaptor molecule SQSTM1/p62 from macrophages harboring cftr ΔF508 mutation improves the delivery of Burkholderia cenocepacia to the autophagic machinery.
    Abdulrahman BA; Khweek AA; Akhter A; Caution K; Tazi M; Hassan H; Zhang Y; Rowland PD; Malhotra S; Aeffner F; Davis IC; Valvano MA; Amer AO
    J Biol Chem; 2013 Jan; 288(3):2049-58. PubMed ID: 23148214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial cis-2-unsaturated fatty acids found in the cystic fibrosis airway modulate virulence and persistence of Pseudomonas aeruginosa.
    Twomey KB; O'Connell OJ; McCarthy Y; Dow JM; O'Toole GA; Plant BJ; Ryan RP
    ISME J; 2012 May; 6(5):939-50. PubMed ID: 22134647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pseudomonas aeruginosa alginate promotes Burkholderia cenocepacia persistence in cystic fibrosis transmembrane conductance regulator knockout mice.
    Chattoraj SS; Murthy R; Ganesan S; Goldberg JB; Zhao Y; Hershenson MB; Sajjan US
    Infect Immun; 2010 Mar; 78(3):984-93. PubMed ID: 20048042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Burkholderia cenocepacia-induced delay of acidification and phagolysosomal fusion in cystic fibrosis transmembrane conductance regulator (CFTR)-defective macrophages.
    Lamothe J; Valvano MA
    Microbiology (Reading); 2008 Dec; 154(Pt 12):3825-3834. PubMed ID: 19047750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elevated Mirc1/Mir17-92 cluster expression negatively regulates autophagy and CFTR (cystic fibrosis transmembrane conductance regulator) function in CF macrophages.
    Tazi MF; Dakhlallah DA; Caution K; Gerber MM; Chang SW; Khalil H; Kopp BT; Ahmed AE; Krause K; Davis I; Marsh C; Lovett-Racke AE; Schlesinger LS; Cormet-Boyaka E; Amer AO
    Autophagy; 2016 Nov; 12(11):2026-2037. PubMed ID: 27541364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dendrimer-based selective autophagy-induction rescues ΔF508-CFTR and inhibits Pseudomonas aeruginosa infection in cystic fibrosis.
    Brockman SM; Bodas M; Silverberg D; Sharma A; Vij N
    PLoS One; 2017; 12(9):e0184793. PubMed ID: 28902888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific resistance to Pseudomonas aeruginosa infection in zebrafish is mediated by the cystic fibrosis transmembrane conductance regulator.
    Phennicie RT; Sullivan MJ; Singer JT; Yoder JA; Kim CH
    Infect Immun; 2010 Nov; 78(11):4542-50. PubMed ID: 20732993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. (R)-Roscovitine and CFTR modulators enhance killing of multi-drug resistant Burkholderia cenocepacia by cystic fibrosis macrophages.
    Shrestha CL; Zhang S; Wisniewski B; Häfner S; Elie J; Meijer L; Kopp BT
    Sci Rep; 2020 Dec; 10(1):21700. PubMed ID: 33303916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pseudomonas Aeruginosa: Genetic Adaptation, A Strategy for its Persistence in Cystic Fibrosis.
    Rosales-Reyes R; Vargas-Roldán SY; Lezana-Fernández JL; Santos-Preciado JI
    Arch Med Res; 2021 May; 52(4):357-361. PubMed ID: 33309309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autophagy stimulation by rapamycin suppresses lung inflammation and infection by Burkholderia cenocepacia in a model of cystic fibrosis.
    Abdulrahman BA; Khweek AA; Akhter A; Caution K; Kotrange S; Abdelaziz DH; Newland C; Rosales-Reyes R; Kopp B; McCoy K; Montione R; Schlesinger LS; Gavrilin MA; Wewers MD; Valvano MA; Amer AO
    Autophagy; 2011 Nov; 7(11):1359-70. PubMed ID: 21997369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IFN-γ stimulates autophagy-mediated clearance of Burkholderia cenocepacia in human cystic fibrosis macrophages.
    Assani K; Tazi MF; Amer AO; Kopp BT
    PLoS One; 2014; 9(5):e96681. PubMed ID: 24798083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CFTR Modulators Restore Acidification of Autophago-Lysosomes and Bacterial Clearance in Cystic Fibrosis Macrophages.
    Badr A; Eltobgy M; Krause K; Hamilton K; Estfanous S; Daily KP; Abu Khweek A; Hegazi A; Anne MNK; Carafice C; Robledo-Avila F; Saqr Y; Zhang X; Bonfield TL; Gavrilin MA; Partida-Sanchez S; Seveau S; Cormet-Boyaka E; Amer AO
    Front Cell Infect Microbiol; 2022; 12():819554. PubMed ID: 35252032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chloride Conductance, Nasal Potential Difference and Cystic Fibrosis Pathophysiology.
    Procianoy EDFA; de Abreu E Silva FA; Maróstica PJC; Quinton PM
    Lung; 2020 Feb; 198(1):151-156. PubMed ID: 31734731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mouse models of chronic lung infection with Pseudomonas aeruginosa: models for the study of cystic fibrosis.
    Stotland PK; Radzioch D; Stevenson MM
    Pediatr Pulmonol; 2000 Nov; 30(5):413-24. PubMed ID: 11064433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pseudomonas aeruginosa-induced bleb-niche formation in epithelial cells is independent of actinomyosin contraction and enhanced by loss of cystic fibrosis transmembrane-conductance regulator osmoregulatory function.
    Jolly AL; Takawira D; Oke OO; Whiteside SA; Chang SW; Wen ER; Quach K; Evans DJ; Fleiszig SM
    mBio; 2015 Feb; 6(2):e02533. PubMed ID: 25714715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dysregulated Calcium Homeostasis in Cystic Fibrosis Neutrophils Leads to Deficient Antimicrobial Responses.
    Robledo-Avila FH; Ruiz-Rosado JD; Brockman KL; Kopp BT; Amer AO; McCoy K; Bakaletz LO; Partida-Sanchez S
    J Immunol; 2018 Oct; 201(7):2016-2027. PubMed ID: 30120123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.