These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 34692743)

  • 1. Biofortification of Cereals and Pulses Using New Breeding Techniques: Current and Future Perspectives.
    Shahzad R; Jamil S; Ahmad S; Nisar A; Khan S; Amina Z; Kanwal S; Aslam HMU; Gill RA; Zhou W
    Front Nutr; 2021; 8():721728. PubMed ID: 34692743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biofortification-A Frontier Novel Approach to Enrich Micronutrients in Field Crops to Encounter the Nutritional Security.
    Dhaliwal SS; Sharma V; Shukla AK; Verma V; Kaur M; Shivay YS; Nisar S; Gaber A; Brestic M; Barek V; Skalicky M; Ondrisik P; Hossain A
    Molecules; 2022 Feb; 27(4):. PubMed ID: 35209127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Availability, production, and consumption of crops biofortified by plant breeding: current evidence and future potential.
    Saltzman A; Birol E; Oparinde A; Andersson MS; Asare-Marfo D; Diressie MT; Gonzalez C; Lividini K; Moursi M; Zeller M
    Ann N Y Acad Sci; 2017 Feb; 1390(1):104-114. PubMed ID: 28253441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breeding and adoption of biofortified crops and their nutritional impact on human health.
    Kumar S; DePauw RM; Kumar S; Kumar J; Kumar S; Pandey MP
    Ann N Y Acad Sci; 2023 Feb; 1520(1):5-19. PubMed ID: 36479674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reducing Mineral and Vitamin Deficiencies through Biofortification: Progress Under HarvestPlus.
    Bouis H
    World Rev Nutr Diet; 2018; 118():112-122. PubMed ID: 29656297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNAs modulating nutrient homeostasis: a sustainable approach for developing biofortified crops.
    Jamla M; Joshi S; Patil S; Tripathi BN; Kumar V
    Protoplasma; 2023 Jan; 260(1):5-19. PubMed ID: 35657503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biofortified Crops Generated by Breeding, Agronomy, and Transgenic Approaches Are Improving Lives of Millions of People around the World.
    Garg M; Sharma N; Sharma S; Kapoor P; Kumar A; Chunduri V; Arora P
    Front Nutr; 2018; 5():12. PubMed ID: 29492405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomics-Integrated Breeding for Carotenoids and Folates in Staple Cereal Grains to Reduce Malnutrition.
    Ashokkumar K; Govindaraj M; Karthikeyan A; Shobhana VG; Warkentin TD
    Front Genet; 2020; 11():414. PubMed ID: 32547594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing the Nutritional Quality of Major Food Crops Through Conventional and Genomics-Assisted Breeding.
    Gaikwad KB; Rani S; Kumar M; Gupta V; Babu PH; Bainsla NK; Yadav R
    Front Nutr; 2020; 7():533453. PubMed ID: 33324668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic approaches for improving grain zinc and iron content in wheat.
    Roy C; Kumar S; Ranjan RD; Kumhar SR; Govindan V
    Front Genet; 2022; 13():1045955. PubMed ID: 36437911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combating Mineral Malnutrition through Iron and Zinc Biofortification of Cereals.
    Shahzad Z; Rouached H; Rakha A
    Compr Rev Food Sci Food Saf; 2014 May; 13(3):329-346. PubMed ID: 33412655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biofortification: a new tool to reduce micronutrient malnutrition.
    Bouis HE; Hotz C; McClafferty B; Meenakshi JV; Pfeiffer WH
    Food Nutr Bull; 2011 Mar; 32(1 Suppl):S31-40. PubMed ID: 21717916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofortification: A long-term solution to improve global health- a review.
    Monika G; Melanie Kim SR; Kumar PS; Gayathri KV; Rangasamy G; Saravanan A
    Chemosphere; 2023 Feb; 314():137713. PubMed ID: 36596329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nutritional security through crop biofortification in India: Status & future prospects.
    Yadava DK; Hossain F; Mohapatra T
    Indian J Med Res; 2018 Nov; 148(5):621-631. PubMed ID: 30666987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biofortification in Millets: A Sustainable Approach for Nutritional Security.
    Vinoth A; Ravindhran R
    Front Plant Sci; 2017; 8():29. PubMed ID: 28167953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron Biofortification of Staple Crops: Lessons and Challenges in Plant Genetics.
    Connorton JM; Balk J
    Plant Cell Physiol; 2019 Jul; 60(7):1447-1456. PubMed ID: 31058958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nutritional enhancement of rice for human health: the contribution of biotechnology.
    Bhullar NK; Gruissem W
    Biotechnol Adv; 2013; 31(1):50-7. PubMed ID: 22343216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The potential to improve zinc status through biofortification of staple food crops with zinc.
    Hotz C
    Food Nutr Bull; 2009 Mar; 30(1 Suppl):S172-8. PubMed ID: 19472606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current Knowledge on Genetic Biofortification in Lentil.
    Kumar J; Gupta DS; Kumar S; Gupta S; Singh NP
    J Agric Food Chem; 2016 Aug; 64(33):6383-96. PubMed ID: 27507630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofortification and bioavailability of Zn, Fe and Se in wheat: present status and future prospects.
    Gupta PK; Balyan HS; Sharma S; Kumar R
    Theor Appl Genet; 2021 Jan; 134(1):1-35. PubMed ID: 33136168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.