These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 34692898)

  • 1. Locating Single-Atom Optical Picocavities Using Wavelength-Multiplexed Raman Scattering.
    Griffiths J; de Nijs B; Chikkaraddy R; Baumberg JJ
    ACS Photonics; 2021 Oct; 8(10):2868-2875. PubMed ID: 34692898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-molecule optomechanics in "picocavities".
    Benz F; Schmidt MK; Dreismann A; Chikkaraddy R; Zhang Y; Demetriadou A; Carnegie C; Ohadi H; de Nijs B; Esteban R; Aizpurua J; Baumberg JJ
    Science; 2016 Nov; 354(6313):726-729. PubMed ID: 27846600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Room-Temperature Optical Picocavities below 1 nm
    Carnegie C; Griffiths J; de Nijs B; Readman C; Chikkaraddy R; Deacon WM; Zhang Y; Szabó I; Rosta E; Aizpurua J; Baumberg JJ
    J Phys Chem Lett; 2018 Dec; 9(24):7146-7151. PubMed ID: 30525662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling Optically Driven Atomic Migration Using Crystal-Facet Control in Plasmonic Nanocavities.
    Xomalis A; Chikkaraddy R; Oksenberg E; Shlesinger I; Huang J; Garnett EC; Koenderink AF; Baumberg JJ
    ACS Nano; 2020 Aug; 14(8):10562-10568. PubMed ID: 32687323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Picocavities: a Primer.
    Baumberg JJ
    Nano Lett; 2022 Jul; 22(14):5859-5865. PubMed ID: 35793541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disordered ensembles of strongly coupled single-molecule plasmonic picocavities as nonlinear optical metamaterials.
    Herrera F; Litinskaya M
    J Chem Phys; 2022 Mar; 156(11):114702. PubMed ID: 35317564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic-Scale Structural Fluctuations of a Plasmonic Cavity.
    Rosławska A; Merino P; Grewal A; Leon CC; Kuhnke K; Kern K
    Nano Lett; 2021 Sep; 21(17):7221-7227. PubMed ID: 34428071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Full Control of Plasmonic Nanocavities Using Gold Decahedra-on-Mirror Constructs with Monodisperse Facets.
    Hu S; Elliott E; Sánchez-Iglesias A; Huang J; Guo C; Hou Y; Kamp M; Goerlitzer ESA; Bedingfield K; de Nijs B; Peng J; Demetriadou A; Liz-Marzán LM; Baumberg JJ
    Adv Sci (Weinh); 2023 Apr; 10(11):e2207178. PubMed ID: 36737852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic-Scale Lightning Rod Effect in Plasmonic Picocavities: A Classical View to a Quantum Effect.
    Urbieta M; Barbry M; Zhang Y; Koval P; Sánchez-Portal D; Zabala N; Aizpurua J
    ACS Nano; 2018 Jan; 12(1):585-595. PubMed ID: 29298379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in plasmonic nanocavities for single-molecule spectroscopy.
    Maccaferri N; Barbillon G; Koya AN; Lu G; Acuna GP; Garoli D
    Nanoscale Adv; 2021 Feb; 3(3):633-642. PubMed ID: 36133836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tip-enhanced Raman nanographs: mapping topography and local electric fields.
    El-Khoury PZ; Gong Y; Abellan P; Arey BW; Joly AG; Hu D; Evans JE; Browning ND; Hess WP
    Nano Lett; 2015 Apr; 15(4):2385-90. PubMed ID: 25741776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dramatic Enhancement of Tip-Enhanced Raman Scattering Mediated by Atomic Point Contact Formation.
    Liu S; Cirera B; Sun Y; Hamada I; Müller M; Hammud A; Wolf M; Kumagai T
    Nano Lett; 2020 Aug; 20(8):5879-5884. PubMed ID: 32678605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-wavelength lock-in spectroscopy for extracting perturbed spectral responses: molecular signatures in nanocavities.
    Xomalis A; Baumberg JJ
    Opt Express; 2023 Jan; 31(3):5069-5074. PubMed ID: 36785458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superresolution Microscopy of Optical Fields Using Tweezer-Trapped Single Atoms.
    Deist E; Gerber JA; Lu YH; Zeiher J; Stamper-Kurn DM
    Phys Rev Lett; 2022 Feb; 128(8):083201. PubMed ID: 35275676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast vibrational imaging of single cells and tissues by stimulated Raman scattering microscopy.
    Zhang D; Wang P; Slipchenko MN; Cheng JX
    Acc Chem Res; 2014 Aug; 47(8):2282-90. PubMed ID: 24871269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman enhancement on a broadband meta-surface.
    Ayas S; Güner H; Türker B; Ekiz OÖ; Dirisaglik F; Okyay AK; Dâna A
    ACS Nano; 2012 Aug; 6(8):6852-61. PubMed ID: 22845672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing.
    Chen X; Lindquist NC; Klemme DJ; Nagpal P; Norris DJ; Oh SH
    Nano Lett; 2016 Dec; 16(12):7849-7856. PubMed ID: 27960527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyridine-Ag20 cluster: a model system for studying surface-enhanced Raman scattering.
    Zhao L; Jensen L; Schatz GC
    J Am Chem Soc; 2006 Mar; 128(9):2911-9. PubMed ID: 16506770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.