These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 34693156)

  • 1. Pore Fractal Characteristics of Suancigou Long-Flame Coal after Electrochemical Treatment: An Experimental Study through the Implementation of N
    Zhang X; Cheng J; Zhang L; Zhou T; Kang T; Li L
    ACS Omega; 2021 Oct; 6(41):27358-27367. PubMed ID: 34693156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Pore Structures with Mercury Intrusion Porosimetry after Electrochemical Modification: A Case Study of Jincheng Anthracite.
    Guo J; Zhang X; Lu C; Chai Z; Kang G; Zhao G; Kang T; Zhang S; Li H
    ACS Omega; 2022 Apr; 7(13):11148-11157. PubMed ID: 35415342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Full-scale pore characteristics in coal and their influence on the adsorption capacity of coalbed methane.
    Li Y; Liu W; Song D; Ren Z; Wang H; Guo X
    Environ Sci Pollut Res Int; 2023 Jun; 30(28):72187-72206. PubMed ID: 37166730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Petrographic and Geochemical Controls on Methane Genesis, Pore Fractal Attributes, and Sorption of Lower Gondwana Coal of Jharia Basin, India.
    Das PR; Mendhe VA; Kamble AD; Sharma P; Shukla P; Varma AK
    ACS Omega; 2022 Jan; 7(1):299-324. PubMed ID: 35036701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selection Effect of Liquid Nitrogen Freeze-Thaw Cycles on Full Pore Size Distribution of Different Rank Coals.
    Li Y; Ren Z; Song D; Liu W; Wang H; Guo X
    ACS Omega; 2023 Mar; 8(10):9526-9538. PubMed ID: 36936307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Electric Potential Gradient on Methane Adsorption and Desorption Behaviors in Lean Coal by Electrochemical Modification: Implications for Coalbed Methane Development of Dongqu Mining, China.
    Kang G; Kang T; Guo J; Kang J; Zhang R; Zhang X; Zhao G; Zhang B; Li L; Zhang L
    ACS Omega; 2020 Sep; 5(37):24073-24080. PubMed ID: 32984729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in mineral fraction and pore morphology of coal with acidification treatment: contribution of clay minerals to methane adsorption.
    Wang L; Li Z; Li J; Chen Y; Zhang K; Han X; Xu G
    Environ Sci Pollut Res Int; 2023 Nov; 30(54):114886-114900. PubMed ID: 37875755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental Investigation of the Matrix Pore Size Distribution and Inner Surface Fractal Dimension of Different-Structure High Rank Coals.
    Wang R; Li G; Liu S
    J Nanosci Nanotechnol; 2021 Jan; 21(1):529-537. PubMed ID: 33213651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pore Size Distribution Characteristics of High Rank Coal with Various Grain Sizes.
    Liu LL; Cui ZH; Wang JJ; Xia ZH; Duan LJ; Yang Y; Li M; Li T
    ACS Omega; 2020 Aug; 5(31):19785-19795. PubMed ID: 32803074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive fractal description of porosity of coal of different ranks.
    Ren J; Zhang G; Song Z; Liu G; Li B
    ScientificWorldJournal; 2014; 2014():490318. PubMed ID: 24955407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Supercritical CO
    Ma X; Du Y; Fu C; Fang H; Wei H; Pan Z; Sang S; Zhang J
    ACS Omega; 2023 May; 8(21):18964-18980. PubMed ID: 37273609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation on the influence of the macropores in coal on CBM recovery.
    Liu X; Sang S; Zhou X; Liu S; Wang Z; Mo Y
    Heliyon; 2023 Sep; 9(9):e19558. PubMed ID: 37809915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supercritical CO
    Yang Q; Li W; Jin K
    ACS Omega; 2020 Apr; 5(16):9276-9290. PubMed ID: 32363278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the difference of pore structure of anthracite under different particle sizes using low-temperature nitrogen adsorption method.
    Qi L; Zhou X; Peng X; Chen X; Wang Z; An F
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):5216-5230. PubMed ID: 35982386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fractal Analysis in Pore Size Distributions of Different Bituminous Coals.
    Zhu J; He F; Zhang Y; Zhang R; Zhang B
    Sci Rep; 2019 Dec; 9(1):18162. PubMed ID: 31796834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acidification-Induced Micronano Mechanical Properties and Microscopic Permeability Enhancement Mechanism of Coal.
    Xie H; Li X; Sui H; Cai J; Xu E; Zhao J
    Langmuir; 2024 Feb; 40(8):4496-4513. PubMed ID: 38347737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical Modification on CH
    Zhang X; Cheng J; Kang T; Zhou X; Zhang L
    ACS Omega; 2021 Sep; 6(37):24147-24155. PubMed ID: 34568693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pore Characteristics and Fractal Dimension Analysis of Tectonic Coal and Primary-Structure Coal: A Case Study of Sanjia Coal Mine in Northern Guizhou.
    Lin H; Tian S; Jiao A; Cao Z; Song K; Zou Y
    ACS Omega; 2022 Aug; 7(31):27300-27311. PubMed ID: 35967048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fractal Characteristics and Its Controlling Factors of Nanopore of Coal from Shanxi Province, North China.
    Xu Z; Li M; Xu Y; Sun L
    J Nanosci Nanotechnol; 2021 Jan; 21(1):727-740. PubMed ID: 33213674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of the Microstructure of Coal at Different Temperatures and Quantitative Fractal Characterization.
    Xu YL; Huo XW; Wang LY; Gong XJ; Lv ZC; Zhao T
    ACS Omega; 2023 Jun; 8(25):23098-23111. PubMed ID: 37396220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.