These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 34693457)
1. Mapping the effects of atomoxetine during response inhibition across cortical territories and the locus coeruleus. Ye R; Mazibuko N; Teichert J; Regenthal R; Kehagia AA; Mehta MA Psychopharmacology (Berl); 2022 Feb; 239(2):365-376. PubMed ID: 34693457 [TBL] [Abstract][Full Text] [Related]
2. Locus coeruleus integrity and the effect of atomoxetine on response inhibition in Parkinson's disease. O'Callaghan C; Hezemans FH; Ye R; Rua C; Jones PS; Murley AG; Holland N; Regenthal R; Tsvetanov KA; Wolpe N; Barker RA; Williams-Gray CH; Robbins TW; Passamonti L; Rowe JB Brain; 2021 Sep; 144(8):2513-2526. PubMed ID: 33783470 [TBL] [Abstract][Full Text] [Related]
3. Prefrontal Cortical Connectivity Mediates Locus Coeruleus Noradrenergic Regulation of Inhibitory Control in Older Adults. Tomassini A; Hezemans FH; Ye R; Tsvetanov KA; Wolpe N; Rowe JB J Neurosci; 2022 Apr; 42(16):3484-3493. PubMed ID: 35277392 [TBL] [Abstract][Full Text] [Related]
4. Dissociable attentional and inhibitory networks of dorsal and ventral areas of the right inferior frontal cortex: a combined task-specific and coordinate-based meta-analytic fMRI study. Sebastian A; Jung P; Neuhoff J; Wibral M; Fox PT; Lieb K; Fries P; Eickhoff SB; Tüscher O; Mobascher A Brain Struct Funct; 2016 Apr; 221(3):1635-51. PubMed ID: 25637472 [TBL] [Abstract][Full Text] [Related]
5. Atomoxetine restores the response inhibition network in Parkinson's disease. Rae CL; Nombela C; Rodríguez PV; Ye Z; Hughes LE; Jones PS; Ham T; Rittman T; Coyle-Gilchrist I; Regenthal R; Sahakian BJ; Barker RA; Robbins TW; Rowe JB Brain; 2016 Aug; 139(Pt 8):2235-48. PubMed ID: 27343257 [TBL] [Abstract][Full Text] [Related]
6. Reward improves response inhibition by enhancing attentional capture. Wang Y; Braver TS; Yin S; Hu X; Wang X; Chen A Soc Cogn Affect Neurosci; 2019 Jan; 14(1):35-45. PubMed ID: 30535116 [TBL] [Abstract][Full Text] [Related]
7. Atomoxetine modulates right inferior frontal activation during inhibitory control: a pharmacological functional magnetic resonance imaging study. Chamberlain SR; Hampshire A; Müller U; Rubia K; Del Campo N; Craig K; Regenthal R; Suckling J; Roiser JP; Grant JE; Bullmore ET; Robbins TW; Sahakian BJ Biol Psychiatry; 2009 Apr; 65(7):550-5. PubMed ID: 19026407 [TBL] [Abstract][Full Text] [Related]
8. Inhibition and impulsivity: behavioral and neural basis of response control. Bari A; Robbins TW Prog Neurobiol; 2013 Sep; 108():44-79. PubMed ID: 23856628 [TBL] [Abstract][Full Text] [Related]
9. Neural Architecture of Selective Stopping Strategies: Distinct Brain Activity Patterns Are Associated with Attentional Capture But Not with Outright Stopping. Sebastian A; Rössler K; Wibral M; Mobascher A; Lieb K; Jung P; Tüscher O J Neurosci; 2017 Oct; 37(40):9785-9794. PubMed ID: 28887387 [TBL] [Abstract][Full Text] [Related]
10. Topography and timing of activity in right inferior frontal cortex and anterior insula for stopping movement. Bartoli E; Aron AR; Tandon N Hum Brain Mapp; 2018 Jan; 39(1):189-203. PubMed ID: 29024235 [TBL] [Abstract][Full Text] [Related]
11. Transcranial magnetic stimulation and functional MRI reveal cortical and subcortical interactions during stop-signal response inhibition. Zandbelt BB; Bloemendaal M; Hoogendam JM; Kahn RS; Vink M J Cogn Neurosci; 2013 Feb; 25(2):157-74. PubMed ID: 23066733 [TBL] [Abstract][Full Text] [Related]
12. Effects of rTMS of pre-supplementary motor area on fronto basal ganglia network activity during stop-signal task. Watanabe T; Hanajima R; Shirota Y; Tsutsumi R; Shimizu T; Hayashi T; Terao Y; Ugawa Y; Katsura M; Kunimatsu A; Ohtomo K; Hirose S; Miyashita Y; Konishi S J Neurosci; 2015 Mar; 35(12):4813-23. PubMed ID: 25810512 [TBL] [Abstract][Full Text] [Related]
13. Strategy switches in proactive inhibitory control and their association with task-general and stopping-specific networks. Messel MS; Raud L; Hoff PK; Skaftnes CS; Huster RJ Neuropsychologia; 2019 Dec; 135():107220. PubMed ID: 31586553 [TBL] [Abstract][Full Text] [Related]
14. Neural correlates of atomoxetine improving inhibitory control and visual processing in Drug-naïve adults with attention-deficit/hyperactivity disorder. Fan LY; Chou TL; Gau SS Hum Brain Mapp; 2017 Oct; 38(10):4850-4864. PubMed ID: 28657141 [TBL] [Abstract][Full Text] [Related]
15. Atomoxetine modulates spontaneous and sensory-evoked discharge of locus coeruleus noradrenergic neurons. Bari A; Aston-Jones G Neuropharmacology; 2013 Jan; 64(1):53-64. PubMed ID: 22820275 [TBL] [Abstract][Full Text] [Related]
16. Prefrontal Cortex Activation and Stopping Performance Underlie the Beneficial Effects of Atomoxetine on Response Inhibition in Healthy Volunteers and Those With Cocaine Use Disorder. Zhukovsky P; Morein-Zamir S; Ziauddeen H; Fernandez-Egea E; Meng C; Regenthal R; Sahakian BJ; Bullmore ET; Robbins TW; Dalley JW; Ersche KD Biol Psychiatry Cogn Neurosci Neuroimaging; 2022 Nov; 7(11):1116-1126. PubMed ID: 34508901 [TBL] [Abstract][Full Text] [Related]
17. Effects of nicotine and atomoxetine on brain function during response inhibition. Kasparbauer AM; Petrovsky N; Schmidt PM; Trautner P; Weber B; Sträter B; Ettinger U Eur Neuropsychopharmacol; 2019 Dec; 29(2):235-246. PubMed ID: 30552041 [TBL] [Abstract][Full Text] [Related]
19. Activation of the pre-supplementary motor area but not inferior prefrontal cortex in association with short stop signal reaction time--an intra-subject analysis. Chao HH; Luo X; Chang JL; Li CS BMC Neurosci; 2009 Jul; 10():75. PubMed ID: 19602259 [TBL] [Abstract][Full Text] [Related]
20. Putting the brakes on inhibitory models of frontal lobe function. Hampshire A Neuroimage; 2015 Jun; 113():340-55. PubMed ID: 25818684 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]