These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 34693497)
1. Tunable hydrodynamic focusing with dual-neodymium magnet-based microfluidic separation device. Al-Zareer M Med Biol Eng Comput; 2022 Jan; 60(1):47-60. PubMed ID: 34693497 [TBL] [Abstract][Full Text] [Related]
2. Dual-neodymium magnet-based microfluidic separation device. Kye HG; Park BS; Lee JM; Song MG; Song HG; Ahrberg CD; Chung BG Sci Rep; 2019 Jul; 9(1):9502. PubMed ID: 31263123 [TBL] [Abstract][Full Text] [Related]
3. Enhanced microfluidic multi-target separation by positive and negative magnetophoresis. Khashan S; Odhah AA; Taha M; Alazzam A; Al-Fandi M Sci Rep; 2024 Jun; 14(1):13293. PubMed ID: 38858424 [TBL] [Abstract][Full Text] [Related]
4. Separation of micro and sub-micro diamagnetic particles in dual ferrofluid streams based on negative magnetophoresis. Xue CD; Sun ZP; Li YJ; Chen JF; Liu B; Qin KR Electrophoresis; 2020 Jun; 41(10-11):909-916. PubMed ID: 32145034 [TBL] [Abstract][Full Text] [Related]
5. Development of a novel magnetophoresis-assisted hydrophoresis microdevice for rapid particle ordering. Yan S; Zhang J; Chen H; Yuan D; Alici G; Du H; Zhu Y; Li W Biomed Microdevices; 2016 Aug; 18(4):54. PubMed ID: 27289469 [TBL] [Abstract][Full Text] [Related]
6. Magneto-Hydrodynamic Fractionation (MHF) for continuous and sheathless sorting of high-concentration paramagnetic microparticles. Kumar V; Rezai P Biomed Microdevices; 2017 Jun; 19(2):39. PubMed ID: 28466285 [TBL] [Abstract][Full Text] [Related]
8. Magnetophoresis 'meets' viscoelasticity: deterministic separation of magnetic particles in a modular microfluidic device. Del Giudice F; Madadi H; Villone MM; D'Avino G; Cusano AM; Vecchione R; Ventre M; Maffettone PL; Netti PA Lab Chip; 2015 Apr; 15(8):1912-22. PubMed ID: 25732596 [TBL] [Abstract][Full Text] [Related]
9. Sheathless and high throughput sorting of paramagnetic microparticles in a magneto-hydrodynamic microfluidic device. Kumar V; Rezai P Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():473-476. PubMed ID: 28268374 [TBL] [Abstract][Full Text] [Related]
10. A microfluidic-based hydrodynamic trap for single particles. Johnson-Chavarria EM; Tanyeri M; Schroeder CM J Vis Exp; 2011 Jan; (47):. PubMed ID: 21304467 [TBL] [Abstract][Full Text] [Related]
11. Multiphase ferrofluid flows for micro-particle focusing and separation. Zhou R; Wang C Biomicrofluidics; 2016 May; 10(3):034101. PubMed ID: 27190567 [TBL] [Abstract][Full Text] [Related]
12. 3D hydrodynamic focusing microfluidics for emerging sensing technologies. Daniele MA; Boyd DA; Mott DR; Ligler FS Biosens Bioelectron; 2015 May; 67():25-34. PubMed ID: 25041926 [TBL] [Abstract][Full Text] [Related]
13. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing. Lin SC; Yen PW; Peng CC; Tung YC Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751 [TBL] [Abstract][Full Text] [Related]
14. Self-Assembled Permanent Micro-Magnets in a Polymer-Based Microfluidic Device for Magnetic Cell Sorting. Descamps L; Audry MC; Howard J; Mekkaoui S; Albin C; Barthelemy D; Payen L; Garcia J; Laurenceau E; Le Roy D; Deman AL Cells; 2021 Jul; 10(7):. PubMed ID: 34359904 [TBL] [Abstract][Full Text] [Related]
15. Fractionation of Magnetic Microspheres in a Microfluidic Spiral: Interplay between Magnetic and Hydrodynamic Forces. Dutz S; Hayden ME; Häfeli UO PLoS One; 2017; 12(1):e0169919. PubMed ID: 28107472 [TBL] [Abstract][Full Text] [Related]
16. Investigation of hydrodynamic focusing in a microfluidic coulter counter device. Zhang M; Lian Y; Harnett C; Brehob E J Biomech Eng; 2012 Aug; 134(8):081001. PubMed ID: 22938354 [TBL] [Abstract][Full Text] [Related]
17. A hydrodynamic-based dual-function microfluidic chip for high throughput discriminating tumor cells. Wei YJ; Wei X; Zhang X; Wu CX; Cai JY; Chen ML; Wang JH Talanta; 2024 Jun; 273():125884. PubMed ID: 38508128 [TBL] [Abstract][Full Text] [Related]
18. Label-Free Multitarget Separation of Particles and Cells under Flow Using Acoustic, Electrophoretic, and Hydrodynamic Forces. Wu Y; Chattaraj R; Ren Y; Jiang H; Lee D Anal Chem; 2021 Jun; 93(21):7635-7646. PubMed ID: 34014074 [TBL] [Abstract][Full Text] [Related]
19. Dielectrophoretic separation/classification/focusing of microparticles using electrified lab-on-a-disc platforms. Kordzadeh-Kermani V; Ashrafizadeh SN; Madadelahi M Anal Chim Acta; 2024 Jun; 1310():342719. PubMed ID: 38811136 [TBL] [Abstract][Full Text] [Related]
20. Tapered Microfluidic for Continuous Micro-Object Separation Based on Hydrodynamic Principle. Ahmad IL; Ahmad MR; Takeuchi M; Nakajima M; Hasegawa Y IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1413-1421. PubMed ID: 29293427 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]