These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 34693634)
1. Microbial survival and growth on non-corrodible conductive materials. Bird LJ; Tender LM; Eddie B; Oh E; Phillips DA; Glaven SM Environ Microbiol; 2021 Nov; 23(11):7231-7244. PubMed ID: 34693634 [TBL] [Abstract][Full Text] [Related]
2. Relative abundance of 'Candidatus Tenderia electrophaga' is linked to cathodic current in an aerobic biocathode community. Malanoski AP; Lin B; Eddie BJ; Wang Z; Hervey WJ; Glaven SM Microb Biotechnol; 2018 Jan; 11(1):98-111. PubMed ID: 28696003 [TBL] [Abstract][Full Text] [Related]
3. Metatranscriptomics Supports the Mechanism for Biocathode Electroautotrophy by " Eddie BJ; Wang Z; Hervey WJ; Leary DH; Malanoski AP; Tender LM; Lin B; Strycharz-Glaven SM mSystems; 2017; 2(2):. PubMed ID: 28382330 [TBL] [Abstract][Full Text] [Related]
4. 'Candidatus Tenderia electrophaga', an uncultivated electroautotroph from a biocathode enrichment. Eddie BJ; Wang Z; Malanoski AP; Hall RJ; Oh SD; Heiner C; Lin B; Strycharz-Glaven SM Int J Syst Evol Microbiol; 2016 Jun; 66(6):2178-2185. PubMed ID: 26957484 [TBL] [Abstract][Full Text] [Related]
5. Conservation of Energetic Pathways for Electroautotrophy in the Uncultivated Candidate Order Eddie BJ; Bird LJ; Pelikan C; Mussmann M; Martínez-Pérez C; Pinamang P; Malanoski AP; Glaven SM mSphere; 2022 Oct; 7(5):e0022322. PubMed ID: 36069437 [TBL] [Abstract][Full Text] [Related]
6. Redox Conductivity of Current-Producing Mixed Species Biofilms. Li C; Lesnik KL; Fan Y; Liu H PLoS One; 2016; 11(5):e0155247. PubMed ID: 27159497 [TBL] [Abstract][Full Text] [Related]
7. Enhanced redox conductivity and enriched Geobacteraceae of exoelectrogenic biofilms in response to static magnetic field. Li C; Wang L; Liu H Appl Microbiol Biotechnol; 2018 Sep; 102(17):7611-7621. PubMed ID: 29923078 [TBL] [Abstract][Full Text] [Related]
8. Electroactive Bacteria Associated With Stainless Steel Ennoblement in Seawater. Trigodet F; Larché N; Morrison HG; Jebbar M; Thierry D; Maignien L Front Microbiol; 2019; 10():170. PubMed ID: 30792705 [TBL] [Abstract][Full Text] [Related]
9. Conductive artificial biofilm dramatically enhances bioelectricity production in Shewanella-inoculated microbial fuel cells. Yu YY; Chen HL; Yong YC; Kim DH; Song H Chem Commun (Camb); 2011 Dec; 47(48):12825-7. PubMed ID: 22048750 [TBL] [Abstract][Full Text] [Related]
10. Highly active bidirectional electron transfer by a self-assembled electroactive reduced-graphene-oxide-hybridized biofilm. Yong YC; Yu YY; Zhang X; Song H Angew Chem Int Ed Engl; 2014 Apr; 53(17):4480-3. PubMed ID: 24644059 [TBL] [Abstract][Full Text] [Related]
11. A previously uncharacterized, nonphotosynthetic member of the Chromatiaceae is the primary CO2-fixing constituent in a self-regenerating biocathode. Wang Z; Leary DH; Malanoski AP; Li RW; Hervey WJ; Eddie BJ; Tender GS; Yanosky SG; Vora GJ; Tender LM; Lin B; Strycharz-Glaven SM Appl Environ Microbiol; 2015 Jan; 81(2):699-712. PubMed ID: 25398855 [TBL] [Abstract][Full Text] [Related]
12. Millimeter scale electron conduction through exoelectrogenic mixed species biofilms. Li C; Lesnik KL; Fan Y; Liu H FEMS Microbiol Lett; 2016 Aug; 363(15):. PubMed ID: 27279626 [TBL] [Abstract][Full Text] [Related]
13. Graphene-modified electrodes for enhancing the performance of microbial fuel cells. Yuan H; He Z Nanoscale; 2015 Apr; 7(16):7022-9. PubMed ID: 25465393 [TBL] [Abstract][Full Text] [Related]
14. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output. Picot M; Lapinsonnière L; Rothballer M; Barrière F Biosens Bioelectron; 2011 Oct; 28(1):181-8. PubMed ID: 21803564 [TBL] [Abstract][Full Text] [Related]
15. Investigating the effects of fluidic connection between microbial fuel cells. Winfield J; Ieropoulos I; Greenman J; Dennis J Bioprocess Biosyst Eng; 2011 May; 34(4):477-84. PubMed ID: 21136085 [TBL] [Abstract][Full Text] [Related]
16. Multi-walled carbon nanotubes as electrode material for microbial fuel cells. Thepsuparungsikul N; Phonthamachai N; Ng HY Water Sci Technol; 2012; 65(7):1208-14. PubMed ID: 22437017 [TBL] [Abstract][Full Text] [Related]
17. Biofilm as a redox conductor: a systematic study of the moisture and temperature dependence of its electrical properties. Phan H; Yates MD; Kirchhofer ND; Bazan GC; Tender LM; Nguyen TQ Phys Chem Chem Phys; 2016 Jul; 18(27):17815-21. PubMed ID: 27327215 [TBL] [Abstract][Full Text] [Related]
18. Surface morphology and surface energy of anode materials influence power outputs in a multi-channel mediatorless bio-photovoltaic (BPV) system. Bombelli P; Zarrouati M; Thorne RJ; Schneider K; Rowden SJ; Ali A; Yunus K; Cameron PJ; Fisher AC; Ian Wilson D; Howe CJ; McCormick AJ Phys Chem Chem Phys; 2012 Sep; 14(35):12221-9. PubMed ID: 22864466 [TBL] [Abstract][Full Text] [Related]
19. Influence of the major pilA transcriptional regulator in electrochemical responses of Geobacter sulfureducens PilR-deficient mutant biofilm formed on FTO electrodes. Huerta-Miranda GA; Arroyo-Escoto AI; Burgos X; Juárez K; Miranda-Hernández M Bioelectrochemistry; 2019 Jun; 127():145-153. PubMed ID: 30825658 [TBL] [Abstract][Full Text] [Related]
20. Increased carbon dioxide reduction to acetate in a microbial electrosynthesis reactor with a reduced graphene oxide-coated copper foam composite cathode. Aryal N; Wan L; Overgaard MH; Stoot AC; Chen Y; Tremblay PL; Zhang T Bioelectrochemistry; 2019 Aug; 128():83-93. PubMed ID: 30959398 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]