These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 34693634)

  • 21. NanoSIMS imaging reveals metabolic stratification within current-producing biofilms.
    Chadwick GL; Jiménez Otero F; Gralnick JA; Bond DR; Orphan VJ
    Proc Natl Acad Sci U S A; 2019 Oct; 116(41):20716-20724. PubMed ID: 31548422
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lowering the applied potential during successive scratching/re-inoculation improves the performance of microbial anodes for microbial fuel cells.
    Ketep SF; Bergel A; Bertrand M; Achouak W; Fourest E
    Bioresour Technol; 2013 Jan; 127():448-55. PubMed ID: 23138069
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A framework for modeling electroactive microbial biofilms performing direct electron transfer.
    Korth B; Rosa LF; Harnisch F; Picioreanu C
    Bioelectrochemistry; 2015 Dec; 106(Pt A):194-206. PubMed ID: 25921352
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A flexible and disposable battery powered by bacteria using eyeliner coated paper electrodes.
    Veerubhotla R; Das D; Pradhan D
    Biosens Bioelectron; 2017 Aug; 94():464-470. PubMed ID: 28340466
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electroactivity of phototrophic river biofilms and constitutive cultivable bacteria.
    Lyautey E; Cournet A; Morin S; Boulêtreau S; Etcheverry L; Charcosset JY; Delmas F; Bergel A; Garabetian F
    Appl Environ Microbiol; 2011 Aug; 77(15):5394-401. PubMed ID: 21642402
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanoliter scale electrochemistry of natural and engineered electroactive bacteria.
    Yates MD; Bird LJ; Eddie BJ; Onderko EL; Voigt CA; Glaven SM
    Bioelectrochemistry; 2021 Feb; 137():107644. PubMed ID: 32971484
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electron transfer mechanism in Shewanella loihica PV-4 biofilms formed at graphite electrode.
    Jain A; Zhang X; Pastorella G; Connolly JO; Barry N; Woolley R; Krishnamurthy S; Marsili E
    Bioelectrochemistry; 2012 Oct; 87():28-32. PubMed ID: 22281091
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential biofilms characteristics of Shewanella decolorationis microbial fuel cells under open and closed circuit conditions.
    Yang Y; Sun G; Guo J; Xu M
    Bioresour Technol; 2011 Jul; 102(14):7093-8. PubMed ID: 21571526
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Checking graphite and stainless anodes with an experimental model of marine microbial fuel cell.
    Dumas C; Mollica A; Féron D; Basseguy R; Etcheverry L; Bergel A
    Bioresour Technol; 2008 Dec; 99(18):8887-94. PubMed ID: 18558485
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of biocathodes in freshwater and brackish sediment microbial fuel cells.
    De Schamphelaire L; Boeckx P; Verstraete W
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1675-87. PubMed ID: 20467736
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic modeling of spatial heterogeneity of biofilms in microbial fuel cells reveals substrate limitations in electrical current generation.
    Jayasinghe N; Franks A; Nevin KP; Mahadevan R
    Biotechnol J; 2014 Oct; 9(10):1350-61. PubMed ID: 25113946
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comparison of redox polymer and enzyme co-immobilization on carbon electrodes to provide membrane-less glucose/O2 enzymatic fuel cells with improved power output and stability.
    Rengaraj S; Kavanagh P; Leech D
    Biosens Bioelectron; 2011 Dec; 30(1):294-9. PubMed ID: 22005596
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On-Line Raman Spectroscopic Study of Cytochromes' Redox State of Biofilms in Microbial Fuel Cells.
    Krige A; Sjöblom M; Ramser K; Christakopoulos P; Rova U
    Molecules; 2019 Feb; 24(3):. PubMed ID: 30759821
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Riboflavin-shuttled extracellular electron transfer from Enterococcus faecalis to electrodes in microbial fuel cells.
    Zhang E; Cai Y; Luo Y; Piao Z
    Can J Microbiol; 2014 Nov; 60(11):753-9. PubMed ID: 25345758
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Comparative Analysis of the Bacterial Community on Anodic Biofilms in Sediment Microbial Fuel Cell Under Open and Closed Circuits].
    Wu YC; Deng QX; Wang ZJ; Zheng Y; Li DL; Zhao F
    Huan Jing Ke Xue; 2016 Dec; 37(12):4768-4772. PubMed ID: 29965319
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electron Storage in Electroactive Biofilms.
    Ter Heijne A; Pereira MA; Pereira J; Sleutels T
    Trends Biotechnol; 2021 Jan; 39(1):34-42. PubMed ID: 32646618
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Affinity of microbial fuel cell biofilm for the anodic potential.
    Cheng KY; Ho G; Cord-Ruwisch R
    Environ Sci Technol; 2008 May; 42(10):3828-34. PubMed ID: 18546730
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Positive anodic poised potential regulates microbial fuel cell performance with the function of open and closed circuitry.
    Srikanth S; Venkata Mohan S; Sarma PN
    Bioresour Technol; 2010 Jul; 101(14):5337-44. PubMed ID: 20223657
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sampling natural biofilms: a new route to build efficient microbial anodes.
    Erable B; Roncato MA; Achouak W; Bergel A
    Environ Sci Technol; 2009 May; 43(9):3194-9. PubMed ID: 19534134
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced performance of microbial fuel cell with in situ preparing dual graphene modified bioelectrode.
    Chen J; Hu Y; Tan X; Zhang L; Huang W; Sun J
    Bioresour Technol; 2017 Oct; 241():735-742. PubMed ID: 28628977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.