These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34694119)

  • 1. Faster Nucleation of Ice at the Three-Phase Contact Line: Influence of Interfacial Chemistry.
    Kar A; Bhati A; Lokanathan M; Bahadur V
    Langmuir; 2021 Nov; 37(43):12673-12680. PubMed ID: 34694119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Nanoscale Interfacial Proximity in Contact Freezing in Water.
    Hussain S; Haji-Akbari A
    J Am Chem Soc; 2021 Feb; 143(5):2272-2284. PubMed ID: 33507741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonthermal ice nucleation observed at distorted contact lines of supercooled water drops.
    Yang F; Cruikshank O; He W; Kostinski A; Shaw RA
    Phys Rev E; 2018 Feb; 97(2-1):023103. PubMed ID: 29548219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of ice nucleation: freezing and antifreeze strategies.
    Zhang Z; Liu XY
    Chem Soc Rev; 2018 Sep; 47(18):7116-7139. PubMed ID: 30137078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ice-Crystal Nucleation in Water: Thermodynamic Driving Force and Surface Tension. Part I: Theoretical Foundation.
    Hellmuth O; Schmelzer JWP; Feistel R
    Entropy (Basel); 2019 Dec; 22(1):. PubMed ID: 33285825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TinyLev acoustically levitated water: Direct observation of collective, inter-droplet effects through morphological and thermal analysis of multiple droplets.
    McElligott A; Guerra A; Wood MJ; Rey AD; Kietzig AM; Servio P
    J Colloid Interface Sci; 2022 Aug; 619():84-95. PubMed ID: 35378478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial Ice Nucleation in Monodisperse D2O and H2O-in-Oil Emulsions.
    Weng L; Tessier SN; Smith K; Edd JF; Stott SL; Toner M
    Langmuir; 2016 Sep; 32(36):9229-36. PubMed ID: 27495973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistically understanding the roles of nanostructure features in interfacial ice nucleation for enhancing icing delay performance.
    Shen Y; Xie X; Xie Y; Tao J; Jiang J; Chen H; Lu Y; Xu Y
    Phys Chem Chem Phys; 2019 Sep; 21(36):19785-19794. PubMed ID: 31478533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brief Overview of Ice Nucleation.
    Maeda N
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33451150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneous nucleation of ice on carbon surfaces.
    Lupi L; Hudait A; Molinero V
    J Am Chem Soc; 2014 Feb; 136(8):3156-64. PubMed ID: 24495074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is Water at the Graphite Interface Vapor-like or Ice-like?
    Qiu Y; Lupi L; Molinero V
    J Phys Chem B; 2018 Apr; 122(13):3626-3634. PubMed ID: 29298058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can clathrates heterogeneously nucleate ice?
    Factorovich MH; Naullage PM; Molinero V
    J Chem Phys; 2019 Sep; 151(11):114707. PubMed ID: 31542043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinspired Materials for Controlling Ice Nucleation, Growth, and Recrystallization.
    He Z; Liu K; Wang J
    Acc Chem Res; 2018 May; 51(5):1082-1091. PubMed ID: 29664599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zero-sized effect of nano-particles and inverse homogeneous nucleation. Principles of freezing and antifreeze.
    Liu XY; Du N
    J Biol Chem; 2004 Feb; 279(7):6124-31. PubMed ID: 14602714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of surface interactions on heterogeneous ice nucleation for a monatomic water model.
    Reinhardt A; Doye JP
    J Chem Phys; 2014 Aug; 141(8):084501. PubMed ID: 25173015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A first test of the hypothesis of biogenic magnetite-based heterogeneous ice-crystal nucleation in cryopreservation.
    Kobayashi A; Golash HN; Kirschvink JL
    Cryobiology; 2016 Jun; 72(3):216-24. PubMed ID: 27087604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning ice nucleation with counterions on polyelectrolyte brush surfaces.
    He Z; Xie WJ; Liu Z; Liu G; Wang Z; Gao YQ; Wang J
    Sci Adv; 2016 Jun; 2(6):e1600345. PubMed ID: 27386581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lifshitz theory of wetting films at three phase coexistence: The case of ice nucleation on Silver Iodide (AgI).
    Luengo-Márquez J; MacDowell LG
    J Colloid Interface Sci; 2021 May; 590():527-538. PubMed ID: 33571847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of ice nucleation on water repellent surfaces.
    Alizadeh A; Yamada M; Li R; Shang W; Otta S; Zhong S; Ge L; Dhinojwala A; Conway KR; Bahadur V; Vinciquerra AJ; Stephens B; Blohm ML
    Langmuir; 2012 Feb; 28(6):3180-6. PubMed ID: 22235939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-dependent kinetic pathways of heterogeneous ice nucleation competing between classical and non-classical nucleation.
    Li C; Liu Z; Goonetilleke EC; Huang X
    Nat Commun; 2021 Aug; 12(1):4954. PubMed ID: 34400646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.