BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34694314)

  • 1. A simple colorimetric method for viable bacteria detection based on cell counting Kit-8.
    Yang X; Zhong Y; Wang D; Lu Z
    Anal Methods; 2021 Nov; 13(43):5211-5215. PubMed ID: 34694314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An improved MTT colorimetric method for rapid viable bacteria counting.
    Xu W; Shi D; Chen K; Palmer J; Popovich DG
    J Microbiol Methods; 2023 Nov; 214():106830. PubMed ID: 37805093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rapid screening platform for antibiotic susceptibility testing based on a simple colorimetric method.
    Zhao R; Shen Y; Zhao C; Wu C; Liu Y; Wan H; Lu Z
    Analyst; 2023 Aug; 148(17):4148-4155. PubMed ID: 37498542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conductometric sensor for viable Escherichia coli and Staphylococcus aureus based on magnetic analyte separation via aptamer.
    Zhang X; Wang X; Yang Q; Jiang X; Li Y; Zhao J; Qu K
    Mikrochim Acta; 2019 Dec; 187(1):43. PubMed ID: 31832780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence detection of total count of Escherichia coli and Staphylococcus aureus on water-soluble CdSe quantum dots coupled with bacteria.
    Xue X; Pan J; Xie H; Wang J; Zhang S
    Talanta; 2009 Mar; 77(5):1808-13. PubMed ID: 19159803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colorimetric and Electrochemical Detection of Escherichia coli and Antibiotic Resistance Based on a p-Benzoquinone-Mediated Bioassay.
    Sun J; Warden AR; Huang J; Wang W; Ding X
    Anal Chem; 2019 Jun; 91(12):7524-7530. PubMed ID: 31117398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Study on tetrazolium salt colorimetric assay for growth and survival of bacteria].
    Zhang J; Liu X
    Wei Sheng Yan Jiu; 2002 Oct; 31(5):361-3. PubMed ID: 12572357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A sensitive fluorescence method for detection of E. Coli using rhodamine 6G dyeing.
    Wang Y; Jiang C; Wen G; Zhang X; Luo Y; Qin A; Liang A; Jiang Z
    Luminescence; 2016 Jun; 31(4):972-7. PubMed ID: 26573961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A nanowire-integrated thermoresponsive microfluidic platform for on-demand enrichment and colorimetric detection of pathogenic bacteria.
    Du X; Wu C; Wang W; Qiu L; Jiang P; Wang J; Li YQ
    J Mater Chem B; 2019 Dec; 7(46):7301-7305. PubMed ID: 31720675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple and rapid detection of bacteria using a nuclease-responsive DNA probe.
    Lee KJ; Lee WS; Hwang A; Moon J; Kang T; Park K; Jeong J
    Analyst; 2017 Dec; 143(1):332-338. PubMed ID: 29210381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered colorimetric detection of Staphylococcus aureus extracellular proteases.
    Suaifan GARY; Al Nobani SWA; Shehadeh MB; Darwish RM
    Talanta; 2019 Jun; 198():30-38. PubMed ID: 30876564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple and rapid colorimetric bacteria detection method based on bacterial inhibition of glucose oxidase-catalyzed reaction.
    Sun J; Huang J; Li Y; Lv J; Ding X
    Talanta; 2019 May; 197():304-309. PubMed ID: 30771940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dual electrochemical/colorimetric magnetic nanoparticle/peptide-based platform for the detection of Staphylococcus aureus.
    Eissa S; Zourob M
    Analyst; 2020 Jul; 145(13):4606-4614. PubMed ID: 32451524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recyclable metal nanoparticle-immobilized polymer dot on montmorillonite for alkaline phosphatase-based colorimetric sensor with photothermal ablation of Bacteria.
    Robby AI; Park SY
    Anal Chim Acta; 2019 Nov; 1082():152-164. PubMed ID: 31472704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple cassette as point-of-care diagnostic device for naked-eye colorimetric bacteria detection.
    Safavieh M; Ahmed MU; Sokullu E; Ng A; Braescu L; Zourob M
    Analyst; 2014 Jan; 139(2):482-7. PubMed ID: 24300967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple and Precise Counting of Viable Bacteria by Resazurin-Amplified Picoarray Detection.
    Hsieh K; Zec HC; Chen L; Kaushik AM; Mach KE; Liao JC; Wang TH
    Anal Chem; 2018 Aug; 90(15):9449-9456. PubMed ID: 29969556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerobic bacterial, coliform, Escherichia coli and Staphylococcus aureus counts of raw and processed milk from selected smallholder dairy farms of Zimbabwe.
    Mhone TA; Matope G; Saidi PT
    Int J Food Microbiol; 2011 Dec; 151(2):223-8. PubMed ID: 21944662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A sensitive gold nanoparticle-based colorimetric aptasensor for Staphylococcus aureus.
    Yuan J; Wu S; Duan N; Ma X; Xia Y; Chen J; Ding Z; Wang Z
    Talanta; 2014 Sep; 127():163-8. PubMed ID: 24913871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A low pH-based rapid and direct colorimetric sensing of bacteria using unmodified gold nanoparticles.
    Du J; Yu Z; Hu Z; Chen J; Zhao J; Bai Y
    J Microbiol Methods; 2021 Jan; 180():106110. PubMed ID: 33271208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Counting bacteria in microfluidic devices: Smartphone compatible 'dip-and-test' viable cell quantitation using resazurin amplified detection in microliter capillary arrays.
    Needs SH; Osborn HMI; Edwards AD
    J Microbiol Methods; 2021 Aug; 187():106199. PubMed ID: 33771524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.