BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 34694448)

  • 1. Patterns of syntrophic interactions in methanogenic conversion of propionate.
    Cao L; Cox CD; He Q
    Appl Microbiol Biotechnol; 2021 Dec; 105(23):8937-8949. PubMed ID: 34694448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cysteine-Accelerated Methanogenic Propionate Degradation in Paddy Soil Enrichment.
    Zhuang L; Ma J; Tang J; Tang Z; Zhou S
    Microb Ecol; 2017 May; 73(4):916-924. PubMed ID: 27815590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acclimation of acid-tolerant methanogenic propionate-utilizing culture and microbial community dissecting.
    Li Y; Sun Y; Li L; Yuan Z
    Bioresour Technol; 2018 Feb; 250():117-123. PubMed ID: 29161570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catabolism and interactions of syntrophic propionate- and acetate oxidizing microorganisms under mesophilic, high-ammonia conditions.
    Weng N; Singh A; Ohlsson JA; Dolfing J; Westerholm M
    Front Microbiol; 2024; 15():1389257. PubMed ID: 38933034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different Interspecies Electron Transfer Patterns during Mesophilic and Thermophilic Syntrophic Propionate Degradation in Chemostats.
    Chen YT; Zeng Y; Wang HZ; Zheng D; Kamagata Y; Narihiro T; Nobu MK; Tang YQ
    Microb Ecol; 2020 Jul; 80(1):120-132. PubMed ID: 31982930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacts of conductive materials on microbial community during syntrophic propionate oxidization for biomethane recovery.
    Guo B; Zhang Y; Yu N; Liu Y
    Water Environ Res; 2021 Jan; 93(1):84-93. PubMed ID: 32391609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable-isotope probing of microorganisms thriving at thermodynamic limits: syntrophic propionate oxidation in flooded soil.
    Lueders T; Pommerenke B; Friedrich MW
    Appl Environ Microbiol; 2004 Oct; 70(10):5778-86. PubMed ID: 15466514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Syntrophic entanglements for propionate and acetate oxidation under thermophilic and high-ammonia conditions.
    Singh A; Schnürer A; Dolfing J; Westerholm M
    ISME J; 2023 Nov; 17(11):1966-1978. PubMed ID: 37679429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The fate of anaerobic syntrophy in anaerobic digestion facing propionate and acetate accumulation.
    Yue Y; Wang J; Wu X; Zhang J; Chen Z; Kang X; Lv Z
    Waste Manag; 2021 Apr; 124():128-135. PubMed ID: 33611157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vertical distribution of microbial community and metabolic pathway in a methanogenic propionate degradation bioreactor.
    Li Y; Sun Y; Yang G; Hu K; Lv P; Li L
    Bioresour Technol; 2017 Dec; 245(Pt A):1022-1029. PubMed ID: 28946204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Syntrophic oxidation of propionate in rice field soil at 15 and 30°C under methanogenic conditions.
    Gan Y; Qiu Q; Liu P; Rui J; Lu Y
    Appl Environ Microbiol; 2012 Jul; 78(14):4923-32. PubMed ID: 22582054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early response of methanogenic archaea to H
    Kakuk B; Wirth R; Maróti G; Szuhaj M; Rakhely G; Laczi K; Kovács KL; Bagi Z
    Microb Cell Fact; 2021 Jul; 20(1):127. PubMed ID: 34217274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peat: home to novel syntrophic species that feed acetate- and hydrogen-scavenging methanogens.
    Schmidt O; Hink L; Horn MA; Drake HL
    ISME J; 2016 Aug; 10(8):1954-66. PubMed ID: 26771931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Similar Methanogenic Shift but Divergent Syntrophic Partners in Anaerobic Digesters Exposed to Direct versus Successive Ammonium Additions.
    Hardy J; Bonin P; Lazuka A; Gonidec E; Guasco S; Valette C; Lacroix S; Cabrol L
    Microbiol Spectr; 2021 Oct; 9(2):e0080521. PubMed ID: 34612672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of novel potential syntrophic acetate-oxidizing bacteria in thermophilic methanogenic chemostats.
    Zeng Y; Zheng D; Li L-P; Wang M; Gou M; Kamagata Y; Chen Y-T; Nobu MK; Tang Y-Q
    Appl Environ Microbiol; 2024 Feb; 90(2):e0109023. PubMed ID: 38259075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel insights into the anaerobic digestion of propionate via Syntrophobacter fumaroxidans and Geobacter sulfurreducens: Process and mechanism.
    Wang T; Zhu G; Kuang B; Jia J; Liu C; Cai G; Li C
    Water Res; 2021 Jul; 200():117270. PubMed ID: 34077836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel strategy for relieving acid accumulation by enriching syntrophic associations of syntrophic fatty acid-oxidation bacteria and H
    Lv N; Zhao L; Wang R; Ning J; Pan X; Li C; Cai G; Zhu G
    Bioresour Technol; 2020 Oct; 313():123702. PubMed ID: 32615503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enrichment and description of novel bacteria performing syntrophic propionate oxidation at high ammonia level.
    Singh A; Schnürer A; Westerholm M
    Environ Microbiol; 2021 Mar; 23(3):1620-1637. PubMed ID: 33400377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metatranscriptomics reveals a differential temperature effect on the structural and functional organization of the anaerobic food web in rice field soil.
    Peng J; Wegner CE; Bei Q; Liu P; Liesack W
    Microbiome; 2018 Sep; 6(1):169. PubMed ID: 30231929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate.
    Yamada C; Kato S; Ueno Y; Ishii M; Igarashi Y
    J Biosci Bioeng; 2015 Jun; 119(6):678-82. PubMed ID: 25488041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.