These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 34694564)

  • 1. MRI radiomics to differentiate between low grade glioma and glioblastoma peritumoral region.
    Malik N; Geraghty B; Dasgupta A; Maralani PJ; Sandhu M; Detsky J; Tseng CL; Soliman H; Myrehaug S; Husain Z; Perry J; Lau A; Sahgal A; Czarnota GJ
    J Neurooncol; 2021 Nov; 155(2):181-191. PubMed ID: 34694564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative mapping of individual voxels in the peritumoral region of IDH-wildtype glioblastoma to distinguish between tumor infiltration and edema.
    Dasgupta A; Geraghty B; Maralani PJ; Malik N; Sandhu M; Detsky J; Tseng CL; Soliman H; Myrehaug S; Husain Z; Perry J; Lau A; Sahgal A; Czarnota GJ
    J Neurooncol; 2021 Jun; 153(2):251-261. PubMed ID: 33905055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging biomarker analysis of advanced multiparametric MRI for glioma grading.
    Vamvakas A; Williams SC; Theodorou K; Kapsalaki E; Fountas K; Kappas C; Vassiou K; Tsougos I
    Phys Med; 2019 Apr; 60():188-198. PubMed ID: 30910431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A quantitative model based on clinically relevant MRI features differentiates lower grade gliomas and glioblastoma.
    Cao H; Erson-Omay EZ; Li X; Günel M; Moliterno J; Fulbright RK
    Eur Radiol; 2020 Jun; 30(6):3073-3082. PubMed ID: 32025832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiomics MRI Phenotyping with Machine Learning to Predict the Grade of Lower-Grade Gliomas: A Study Focused on Nonenhancing Tumors.
    Park YW; Choi YS; Ahn SS; Chang JH; Kim SH; Lee SK
    Korean J Radiol; 2019 Sep; 20(9):1381-1389. PubMed ID: 31464116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiomics strategy for glioma grading using texture features from multiparametric MRI.
    Tian Q; Yan LF; Zhang X; Zhang X; Hu YC; Han Y; Liu ZC; Nan HY; Sun Q; Sun YZ; Yang Y; Yu Y; Zhang J; Hu B; Xiao G; Chen P; Tian S; Xu J; Wang W; Cui GB
    J Magn Reson Imaging; 2018 Dec; 48(6):1518-1528. PubMed ID: 29573085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinguishing Tumor Cell Infiltration and Vasogenic Edema in the Peritumoral Region of Glioblastoma at the Voxel Level via Conventional MRI Sequences.
    He L; Zhang H; Li T; Yang J; Zhou Y; Wang J; Saidaer T; Liu X; Wang L; Wang Y
    Acad Radiol; 2024 Mar; 31(3):1082-1090. PubMed ID: 37689557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiomic features from the peritumoral brain parenchyma on treatment-naïve multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: Preliminary findings.
    Prasanna P; Patel J; Partovi S; Madabhushi A; Tiwari P
    Eur Radiol; 2017 Oct; 27(10):4188-4197. PubMed ID: 27778090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of glioblastoma heterogeneity on survival stratification: a multimodal MR imaging texture analysis.
    Liu Y; Zhang X; Feng N; Yin L; He Y; Xu X; Lu H
    Acta Radiol; 2018 Oct; 59(10):1239-1246. PubMed ID: 29430935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and Validation of a MRI-Based Radiomics Prognostic Classifier in Patients with Primary Glioblastoma Multiforme.
    Chen X; Fang M; Dong D; Liu L; Xu X; Wei X; Jiang X; Qin L; Liu Z
    Acad Radiol; 2019 Oct; 26(10):1292-1300. PubMed ID: 30660472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI.
    Kim Y; Cho HH; Kim ST; Park H; Nam D; Kong DS
    Neuroradiology; 2018 Dec; 60(12):1297-1305. PubMed ID: 30232517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MRI-based intratumoral and peritumoral radiomics for preoperative prediction of glioma grade: a multicenter study.
    Tan R; Sui C; Wang C; Zhu T
    Front Oncol; 2024; 14():1401977. PubMed ID: 38803534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primary central nervous system lymphoma and atypical glioblastoma: Differentiation using radiomics approach.
    Suh HB; Choi YS; Bae S; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Lee SK
    Eur Radiol; 2018 Sep; 28(9):3832-3839. PubMed ID: 29626238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The diagnostic value of quantitative texture analysis of conventional MRI sequences using artificial neural networks in grading gliomas.
    Alis D; Bagcilar O; Senli YD; Isler C; Yergin M; Kocer N; Islak C; Kizilkilic O
    Clin Radiol; 2020 May; 75(5):351-357. PubMed ID: 31973941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fusion Radiomics Features from Conventional MRI Predict MGMT Promoter Methylation Status in Lower Grade Gliomas.
    Jiang C; Kong Z; Liu S; Feng S; Zhang Y; Zhu R; Chen W; Wang Y; Lyu Y; You H; Zhao D; Wang R; Wang Y; Ma W; Feng F
    Eur J Radiol; 2019 Dec; 121():108714. PubMed ID: 31704598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning predicts histologic type and grade of canine gliomas based on MRI texture analysis.
    Barge P; Oevermann A; Maiolini A; Durand A
    Vet Radiol Ultrasound; 2023 Jul; 64(4):724-732. PubMed ID: 37133981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features.
    Zhang X; Yan LF; Hu YC; Li G; Yang Y; Han Y; Sun YZ; Liu ZC; Tian Q; Han ZY; Liu LD; Hu BQ; Qiu ZY; Wang W; Cui GB
    Oncotarget; 2017 Jul; 8(29):47816-47830. PubMed ID: 28599282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A transfer learning approach on MRI-based radiomics signature for overall survival prediction of low-grade and high-grade gliomas.
    Le VH; Minh TNT; Kha QH; Le NQK
    Med Biol Eng Comput; 2023 Oct; 61(10):2699-2712. PubMed ID: 37432527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiregional radiomics profiling from multiparametric MRI: Identifying an imaging predictor of IDH1 mutation status in glioblastoma.
    Li ZC; Bai H; Sun Q; Zhao Y; Lv Y; Zhou J; Liang C; Chen Y; Liang D; Zheng H
    Cancer Med; 2018 Dec; 7(12):5999-6009. PubMed ID: 30426720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiomics Analysis for Glioma Malignancy Evaluation Using Diffusion Kurtosis and Tensor Imaging.
    Takahashi S; Takahashi W; Tanaka S; Haga A; Nakamoto T; Suzuki Y; Mukasa A; Takayanagi S; Kitagawa Y; Hana T; Nejo T; Nomura M; Nakagawa K; Saito N
    Int J Radiat Oncol Biol Phys; 2019 Nov; 105(4):784-791. PubMed ID: 31344432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.