These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 34694613)

  • 81. Methods for spatial and temporal imaging of the different steps involved in RNA processing at single-molecule resolution.
    Markey FB; Parashar V; Batish M
    Wiley Interdiscip Rev RNA; 2021 Jan; 12(1):e1608. PubMed ID: 32543077
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Combined in vitro transcription and reverse transcription to amplify and label complex synthetic oligonucleotide probe libraries.
    Murgha Y; Beliveau B; Semrau K; Schwartz D; Wu CT; Gulari E; Rouillard JM
    Biotechniques; 2015 Jun; 58(6):301-7. PubMed ID: 26054766
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Visualization of single RNA transcripts in situ.
    Femino AM; Fay FS; Fogarty K; Singer RH
    Science; 1998 Apr; 280(5363):585-90. PubMed ID: 9554849
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Single Cell Analysis Of Transcriptionally Active Alleles By Single Molecule FISH.
    Mistry RM; Singh PK; Mancini MG; Stossi F; Mancini MA
    J Vis Exp; 2020 Sep; (163):. PubMed ID: 33016938
    [TBL] [Abstract][Full Text] [Related]  

  • 85. High-resolution fluorescence in situ hybridization to detect mRNAs in neuronal compartments in vitro and in vivo.
    Swanger SA; Bassell GJ; Gross C
    Methods Mol Biol; 2011; 714():103-23. PubMed ID: 21431737
    [TBL] [Abstract][Full Text] [Related]  

  • 86. An Application-Directed, Versatile DNA FISH Platform for Research and Diagnostics.
    Gelali E; Custodio J; Girelli G; Wernersson E; Crosetto N; Bienko M
    Methods Mol Biol; 2018; 1766():303-333. PubMed ID: 29605860
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Analyzing mRNA expression using single mRNA resolution fluorescent in situ hybridization.
    Zenklusen D; Singer RH
    Methods Enzymol; 2010; 470():641-59. PubMed ID: 20946829
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Fluorescence In Situ Hybridization with Quantum Dot Labels in E. coli Cells.
    Liu Y; Han Z; Sarkar S; Smith AM
    Methods Mol Biol; 2021; 2246():141-155. PubMed ID: 33576988
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Techniques for Single-Molecule mRNA Imaging in Living Cells.
    Czaplinski K
    Adv Exp Med Biol; 2017; 978():425-441. PubMed ID: 28523559
    [TBL] [Abstract][Full Text] [Related]  

  • 90. High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization.
    Moffitt JR; Hao J; Wang G; Chen KH; Babcock HP; Zhuang X
    Proc Natl Acad Sci U S A; 2016 Sep; 113(39):11046-51. PubMed ID: 27625426
    [TBL] [Abstract][Full Text] [Related]  

  • 91. FISH-Flow, a protocol for the concurrent detection of mRNA and protein in single cells using fluorescence in situ hybridization and flow cytometry.
    Arrigucci R; Bushkin Y; Radford F; Lakehal K; Vir P; Pine R; Martin D; Sugarman J; Zhao Y; Yap GS; Lardizabal AA; Tyagi S; Gennaro ML
    Nat Protoc; 2017 Jun; 12(6):1245-1260. PubMed ID: 28518171
    [TBL] [Abstract][Full Text] [Related]  

  • 92. 2D and 3D FISH of expanded repeat RNAs in human lymphoblasts.
    Urbanek MO; Michalak M; Krzyzosiak WJ
    Methods; 2017 May; 120():49-57. PubMed ID: 28404480
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Fluorescent whole-mount RNA in situ hybridization (F-WISH) in plant germ cells and the fertilized ovule.
    Bleckmann A; Dresselhaus T
    Methods; 2016 Apr; 98():66-73. PubMed ID: 26521978
    [TBL] [Abstract][Full Text] [Related]  

  • 94. RNA-FISH to Study Regulatory RNA at the Site of Transcription.
    Soler M; Boque-Sastre R; Guil S
    Methods Mol Biol; 2017; 1543():221-229. PubMed ID: 28349430
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Probing the Conformational State of mRNPs Using smFISH and SIM.
    Adivarahan S; Zenklusen D
    Methods Mol Biol; 2021; 2209():267-286. PubMed ID: 33201475
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Amplified Fluorescence
    Egloff S; Melnychuk N; Cruz Da Silva E; Reisch A; Martin S; Klymchenko AS
    ACS Nano; 2022 Jan; 16(1):1381-1394. PubMed ID: 34928570
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Single molecule chromogenic in situ hybridization assay for RNA visualization in fixed cells and tissues.
    Jiang M; Liu L; Hong C; Chen D; Yao X; Chen X; Lin C; Ke R
    RNA; 2019 Aug; 25(8):1038-1046. PubMed ID: 31064786
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Single-molecule fluorescence in situ hybridization: quantitative imaging of single RNA molecules.
    Kwon S
    BMB Rep; 2013 Feb; 46(2):65-72. PubMed ID: 23433107
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Quantitative intracellular retention of delivered RNAs through optimized cell fixation and immunostaining.
    Paramasivam P; Stöter M; Corradi E; Dalla Costa I; Höijer A; Bartesaghi S; Sabirsh A; Lindfors L; Yanez Arteta M; Nordberg P; Andersson S; Baudet ML; Bickle M; Zerial M
    RNA; 2022 Mar; 28(3):433-446. PubMed ID: 34949721
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Quantum-dot-labeled DNA probes for fluorescence in situ hybridization (FISH) in the microorganism Escherichia coli.
    Wu SM; Zhao X; Zhang ZL; Xie HY; Tian ZQ; Peng J; Lu ZX; Pang DW; Xie ZX
    Chemphyschem; 2006 May; 7(5):1062-7. PubMed ID: 16625674
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.