These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 34694700)
1. Green synthesis of TiO Panneerselvam A; Velayutham J; Ramasamy S IET Nanobiotechnol; 2021 Apr; 15(2):164-172. PubMed ID: 34694700 [TBL] [Abstract][Full Text] [Related]
2. Anionic dye uptake via composite using chitosan-polyacrylamide hydrogel as matrix containing TiO Binaeian E; Babaee Zadvarzi S; Yuan D Int J Biol Macromol; 2020 Nov; 162():150-162. PubMed ID: 32565298 [TBL] [Abstract][Full Text] [Related]
3. An enhanced method for the removal of methyl violet dye using magnetite nanoparticles as an adsorbent: Isotherm, kinetic and thermodynamic study. Tiwari AN; Tapadia K; Thakur C Water Sci Technol; 2022 Aug; 86(4):625-642. PubMed ID: 36038968 [TBL] [Abstract][Full Text] [Related]
4. Adsorption of methyl orange from aqueous solution by aminated pumpkin seed powder: Kinetics, isotherms, and thermodynamic studies. Subbaiah MV; Kim DS Ecotoxicol Environ Saf; 2016 Jun; 128():109-17. PubMed ID: 26921544 [TBL] [Abstract][Full Text] [Related]
5. Green synthesis of Ag El Messaoudi N; El Mouden A; Fernine Y; El Khomri M; Bouich A; Faska N; Ciğeroğlu Z; Américo-Pinheiro JHP; Jada A; Lacherai A Environ Sci Pollut Res Int; 2023 Jul; 30(34):81352-81369. PubMed ID: 35729389 [TBL] [Abstract][Full Text] [Related]
6. Preparation of chitosan/tannin and montmorillonite films as adsorbents for Methyl Orange dye removal. Tahari N; de Hoyos-Martinez PL; Izaguirre N; Houwaida N; Abderrabba M; Ayadi S; Labidi J Int J Biol Macromol; 2022 Jun; 210():94-106. PubMed ID: 35525495 [TBL] [Abstract][Full Text] [Related]
7. Upgraded modified forms of bituminous coal for the removal of safranin-T dye from aqueous solution. Shaban M; Abukhadra MR; Shahien MG; Khan AAP Environ Sci Pollut Res Int; 2017 Aug; 24(22):18135-18151. PubMed ID: 28631125 [TBL] [Abstract][Full Text] [Related]
8. [Preparation of melamine-functionalized porous organic polymer and its adsorption properties for methyl orange]. Zhang C; Guo Y; Peng Z; Zhang W; Zhang S Se Pu; 2021 Sep; 39(9):998-1005. PubMed ID: 34486839 [TBL] [Abstract][Full Text] [Related]
9. Novel green strategy for CuO-ZnO-C nanocomposites fabrication using marigold (Tagetes spp.) flower petals extract with and without CTAB treatment for adsorption of Cr(VI) and Congo red dye. Prajapati AK; Mondal MK J Environ Manage; 2021 Jul; 290():112615. PubMed ID: 33906117 [TBL] [Abstract][Full Text] [Related]
10. Polymeric nanocomposites for the removal of Acid red 52 dye from aqueous solutions: Synthesis, characterization, kinetic and isotherm studies. Gouthaman A; Azarudeen RS; Gnanaprakasam A; Sivakumar VM; Thirumarimurugan M Ecotoxicol Environ Saf; 2018 Sep; 160():42-51. PubMed ID: 29783111 [TBL] [Abstract][Full Text] [Related]
11. Rapid and high-performance adsorptive removal of hazardous acridine orange from aqueous environment using Abelmoschus esculentus seed powder: Single- and multi-parameter optimization studies. Nayak AK; Pal A J Environ Manage; 2018 Jul; 217():573-591. PubMed ID: 29649730 [TBL] [Abstract][Full Text] [Related]
12. Green synthesis of Mn Tran TV; Nguyen DTC; Kumar PS; Din ATM; Qazaq AS; Vo DN Environ Res; 2022 Nov; 214(Pt 2):113925. PubMed ID: 35868583 [TBL] [Abstract][Full Text] [Related]
13. The efficient removal of bisphenol A from aqueous solution using an assembled nanocomposite of zero-valent iron nanoparticles/graphene oxide/copper: Adsorption isotherms, kinetic, and thermodynamic studies. Yousefinia S; Sohrabi MR; Motiee F; Davallo M J Contam Hydrol; 2021 Dec; 243():103906. PubMed ID: 34695718 [TBL] [Abstract][Full Text] [Related]
14. Removal of Reactive Red 195 from aqueous solutions by adsorption on the surface of TiO2 nanoparticles. Belessi V; Romanos G; Boukos N; Lambropoulou D; Trapalis C J Hazard Mater; 2009 Oct; 170(2-3):836-44. PubMed ID: 19540670 [TBL] [Abstract][Full Text] [Related]
15. Utilization of a double-cross-linked amino-functionalized three-dimensional graphene networks as a monolithic adsorbent for methyl orange removal: Equilibrium, kinetics, thermodynamics and artificial neural network modeling. Karaman C; Karaman O; Show PL; Orooji Y; Karimi-Maleh H Environ Res; 2022 May; 207():112156. PubMed ID: 34599897 [TBL] [Abstract][Full Text] [Related]
16. A novel strategy of nanosized herbal Plectranthus amboinicus, Phyllanthus niruri and Euphorbia hirta treated TiO Maheswari P; Harish S; Ponnusamy S; Muthamizhchelvan C Bioprocess Biosyst Eng; 2021 Aug; 44(8):1593-1616. PubMed ID: 34075470 [TBL] [Abstract][Full Text] [Related]
17. Photocatalytic Decolorization and Biocidal Applications of Nonmetal Doped TiO Khan MS; Shah JA; Arshad M; Halim SA; Khan A; Shaikh AJ; Riaz N; Khan AJ; Arfan M; Shahid M; Pervez A; Harasi AA; Bilal M Molecules; 2020 Sep; 25(19):. PubMed ID: 33003312 [TBL] [Abstract][Full Text] [Related]
18. Non-conventional, burnt Qaiyum MA; Samal PP; Dutta S; Dey B; Dey S Int J Phytoremediation; 2024; 26(5):594-607. PubMed ID: 37723603 [TBL] [Abstract][Full Text] [Related]
19. An efficient adsorption of indigo carmine dye from aqueous solution on mesoporous Mg/Fe layered double hydroxide nanoparticles prepared by controlled sol-gel route. Ahmed MA; Brick AA; Mohamed AA Chemosphere; 2017 May; 174():280-288. PubMed ID: 28183053 [TBL] [Abstract][Full Text] [Related]
20. Removal of Acid Orange 7 from aqueous solution using magnetic graphene/chitosan: a promising nano-adsorbent. Sheshmani S; Ashori A; Hasanzadeh S Int J Biol Macromol; 2014 Jul; 68():218-24. PubMed ID: 24813679 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]