These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 34695064)
81. 17α-Ethinyl estradiol-3-sulfate increases survival and hemodynamic functioning in a large animal model of combined traumatic brain injury and hemorrhagic shock: a randomized control trial. Mayer AR; Dodd AB; Rannou-Latella JG; Stephenson DD; Dodd RJ; Ling JM; Mehos CJ; Robertson-Benta CR; Pabbathi Reddy S; Kinsler RE; Vermillion MS; Gigliotti AP; Sicard V; Lloyd AL; Erhardt EB; Gill JM; Lai C; Guedes VA; Chaudry IH Crit Care; 2021 Dec; 25(1):428. PubMed ID: 34915927 [TBL] [Abstract][Full Text] [Related]
82. Development of a novel neuroprotective strategy: combined treatment with hypothermia and valproic acid improves survival in hypoxic hippocampal cells. Jin G; Liu B; You Z; Bambakidis T; Dekker SE; Maxwell J; Halaweish I; Linzel D; Alam HB Surgery; 2014 Aug; 156(2):221-8. PubMed ID: 24950983 [TBL] [Abstract][Full Text] [Related]
83. The effect of resuscitative endovascular balloon occlusion of the aorta, partial aortic occlusion and aggressive blood transfusion on traumatic brain injury in a swine multiple injuries model. Johnson MA; Williams TK; Ferencz SE; Davidson AJ; Russo RM; O'Brien WT; Galante JM; Grayson JK; Neff LP J Trauma Acute Care Surg; 2017 Jul; 83(1):61-70. PubMed ID: 28632582 [TBL] [Abstract][Full Text] [Related]
84. Valproic acid attenuates ischemia-reperfusion injury in the rat brain through inhibition of oxidative stress and inflammation. Suda S; Katsura K; Kanamaru T; Saito M; Katayama Y Eur J Pharmacol; 2013 May; 707(1-3):26-31. PubMed ID: 23541723 [TBL] [Abstract][Full Text] [Related]
85. Neuroprotective and anti-apoptotic effects of valproic acid on adult rat cerebral cortex through ERK and Akt signaling pathway at acute phase of traumatic brain injury. Zhang C; Zhu J; Zhang J; Li H; Zhao Z; Liao Y; Wang X; Su J; Sang S; Yuan X; Liu Q Brain Res; 2014 Mar; 1555():1-9. PubMed ID: 24508577 [TBL] [Abstract][Full Text] [Related]
86. Can a Therapeutic Strategy for Hypotension Improve Cerebral Perfusion and Oxygenation in an Experimental Model of Hemorrhagic Shock and Severe Traumatic Brain Injury? Balzi APCC; Otsuki DA; Andrade L; Paiva W; Souza FL; Aureliano LGC; Malbouisson LMS Neurocrit Care; 2023 Oct; 39(2):320-330. PubMed ID: 37535176 [TBL] [Abstract][Full Text] [Related]
87. Physiologically based pharmacokinetic modeling of disposition and drug-drug interactions for valproic acid and divalproex. Conner TM; Nikolian VC; Georgoff PE; Pai MP; Alam HB; Sun D; Reed RC; Zhang T Eur J Pharm Sci; 2018 Jan; 111():465-481. PubMed ID: 29030176 [TBL] [Abstract][Full Text] [Related]
88. Effect of valproic acid combined with therapeutic hypothermia on neurologic outcome in asphyxial cardiac arrest model of rats. Lee JH; Kim K; Jo YH; Lee MJ; Hwang JE; Kim MA Am J Emerg Med; 2015 Dec; 33(12):1773-9. PubMed ID: 26377282 [TBL] [Abstract][Full Text] [Related]
89. Monocyte depletion attenuates the development of posttraumatic hydrocephalus and preserves white matter integrity after traumatic brain injury. Makinde HM; Just TB; Cuda CM; Bertolino N; Procissi D; Schwulst SJ PLoS One; 2018; 13(11):e0202722. PubMed ID: 30383765 [TBL] [Abstract][Full Text] [Related]
90. Characterisation, in-vitro and in-vivo evaluation of valproic acid-loaded nanoemulsion for improved brain bioavailability. Tan SF; Kirby BP; Stanslas J; Basri HB J Pharm Pharmacol; 2017 Nov; 69(11):1447-1457. PubMed ID: 28809443 [TBL] [Abstract][Full Text] [Related]
91. Prenatal exposure to valproic acid reduces social responses and alters mRNA levels of opioid receptor and pre-pro-peptide in discrete brain regions of adolescent and adult male rats. Hughes EM; Calcagno P; Clarke M; Sanchez C; Smith K; Kelly JP; Finn DP; Roche M Brain Res; 2020 Apr; 1732():146675. PubMed ID: 31978376 [TBL] [Abstract][Full Text] [Related]
92. Controlled Cortical Impact Severity Results in Graded Cellular, Tissue, and Functional Responses in a Piglet Traumatic Brain Injury Model. Baker EW; Kinder HA; Hutcheson JM; Duberstein KJJ; Platt SR; Howerth EW; West FD J Neurotrauma; 2019 Jan; 36(1):61-73. PubMed ID: 29916303 [TBL] [Abstract][Full Text] [Related]
93. Valproic acid-mediated myocardial protection of acute hemorrhagic rat via the BCL-2 pathway. Wang C; Wang Y; Qiao Z; Kuai Q; Wang Y; Wang X; He M; Li W; He Y; Ren S; Yu Q J Trauma Acute Care Surg; 2016 May; 80(5):812-8. PubMed ID: 26886004 [TBL] [Abstract][Full Text] [Related]
94. Recovery Trajectories and Long-Term Outcomes in Traumatic Brain Injury: A Secondary Analysis of the Phase 3 Citicoline Brain Injury Treatment Clinical Trial. Puffer RC; Yue JK; Mesley M; Billigen JB; Sharpless J; Fetzick AL; Puccio AM; Diaz-Arrastia R; Okonkwo DO World Neurosurg; 2019 May; 125():e909-e915. PubMed ID: 30763755 [TBL] [Abstract][Full Text] [Related]
95. Inhibition of ferroptosis attenuates tissue damage and improves long-term outcomes after traumatic brain injury in mice. Xie BS; Wang YQ; Lin Y; Mao Q; Feng JF; Gao GY; Jiang JY CNS Neurosci Ther; 2019 Apr; 25(4):465-475. PubMed ID: 30264934 [TBL] [Abstract][Full Text] [Related]
98. Nitroxides affect neurological deficits and lesion size induced by a rat model of traumatic brain injury. Zakarya R; Sapkota A; Chan YL; Shah J; Saad S; Bottle SE; Oliver BG; Gorrie CA; Chen H Nitric Oxide; 2020 Apr; 97():57-65. PubMed ID: 32061903 [TBL] [Abstract][Full Text] [Related]
99. Lack of mitochondrial ferritin aggravated neurological deficits via enhancing oxidative stress in a traumatic brain injury murine model. Wang L; Wang L; Dai Z; Wu P; Shi H; Zhao S Biosci Rep; 2017 Dec; 37(6):. PubMed ID: 28963372 [TBL] [Abstract][Full Text] [Related]
100. Healed plaque erosion as a cause of recurrent vasospastic angina: a case report. Yamamoto T; Toshimitsu I; Ishida A Eur Heart J Case Rep; 2021 Oct; 5(10):ytab349. PubMed ID: 34738054 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]