These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 34695266)

  • 1. Increasing yield on dry fields: molecular pathways with growing potential.
    Tenorio Berrío R; Nelissen H; Inzé D; Dubois M
    Plant J; 2022 Jan; 109(2):323-341. PubMed ID: 34695266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering: Towards water deficiency adapted crop plants.
    Yoshida T; Yamaguchi-Shinozaki K
    J Plant Physiol; 2021; 258-259():153375. PubMed ID: 33609854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The physiology of plant responses to drought.
    Gupta A; Rico-Medina A; Caño-Delgado AI
    Science; 2020 Apr; 368(6488):266-269. PubMed ID: 32299946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autophagy during drought: function, regulation, and potential application.
    Tang J; Bassham DC
    Plant J; 2022 Jan; 109(2):390-401. PubMed ID: 34469611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytohormones enhanced drought tolerance in plants: a coping strategy.
    Ullah A; Manghwar H; Shaban M; Khan AH; Akbar A; Ali U; Ali E; Fahad S
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):33103-33118. PubMed ID: 30284160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcription factors as key molecular target to strengthen the drought stress tolerance in plants.
    Manna M; Thakur T; Chirom O; Mandlik R; Deshmukh R; Salvi P
    Physiol Plant; 2021 Jun; 172(2):847-868. PubMed ID: 33180329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The molecular paradigm of reactive oxygen species (ROS) and reactive nitrogen species (RNS) with different phytohormone signaling pathways during drought stress in plants.
    Samanta S; Seth CS; Roychoudhury A
    Plant Physiol Biochem; 2024 Jan; 206():108259. PubMed ID: 38154293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolite-mediated adaptation of crops to drought and the acquisition of tolerance.
    Zhang F; Rosental L; Ji B; Brotman Y; Dai M
    Plant J; 2024 May; 118(3):626-644. PubMed ID: 38241088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network Candidate Genes in Breeding for Drought Tolerant Crops.
    Krannich CT; Maletzki L; Kurowsky C; Horn R
    Int J Mol Sci; 2015 Jul; 16(7):16378-400. PubMed ID: 26193269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The potential of transcription factor-based genetic engineering in improving crop tolerance to drought.
    Rabara RC; Tripathi P; Rushton PJ
    OMICS; 2014 Oct; 18(10):601-14. PubMed ID: 25118806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Challenges and perspectives to improve crop drought and salinity tolerance.
    Cominelli E; Conti L; Tonelli C; Galbiati M
    N Biotechnol; 2013 May; 30(4):355-61. PubMed ID: 23165101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular processes induced in primed seeds-increasing the potential to stabilize crop yields under drought conditions.
    Wojtyla Ł; Lechowska K; Kubala S; Garnczarska M
    J Plant Physiol; 2016 Sep; 203():116-126. PubMed ID: 27174076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Climate-Change-Resilient Crops: New Tools and Approaches.
    Shahinnia F; Carrillo N; Hajirezaei MR
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops.
    Yang S; Vanderbeld B; Wan J; Huang Y
    Mol Plant; 2010 May; 3(3):469-90. PubMed ID: 20507936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving crop drought resistance with plant growth regulators and rhizobacteria: Mechanisms, applications, and perspectives.
    Zhang H; Sun X; Dai M
    Plant Commun; 2022 Jan; 3(1):100228. PubMed ID: 35059626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting carbon for crop yield and drought resilience.
    Griffiths CA; Paul MJ
    J Sci Food Agric; 2017 Nov; 97(14):4663-4671. PubMed ID: 28653336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation.
    Zia R; Nawaz MS; Siddique MJ; Hakim S; Imran A
    Microbiol Res; 2021 Jan; 242():126626. PubMed ID: 33189069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex plant responses to drought and heat stress under climate change.
    Sato H; Mizoi J; Shinozaki K; Yamaguchi-Shinozaki K
    Plant J; 2024 Mar; 117(6):1873-1892. PubMed ID: 38168757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developing climate-resilient crops: improving plant tolerance to stress combination.
    Rivero RM; Mittler R; Blumwald E; Zandalinas SI
    Plant J; 2022 Jan; 109(2):373-389. PubMed ID: 34482588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Cas9-based genetic engineering for crop improvement under drought stress.
    Sami A; Xue Z; Tazein S; Arshad A; He Zhu Z; Ping Chen Y; Hong Y; Tian Zhu X; Jin Zhou K
    Bioengineered; 2021 Dec; 12(1):5814-5829. PubMed ID: 34506262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.