BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34695270)

  • 21. The potential of text mining in data integration and network biology for plant research: a case study on Arabidopsis.
    Van Landeghem S; De Bodt S; Drebert ZJ; Inzé D; Van de Peer Y
    Plant Cell; 2013 Mar; 25(3):794-807. PubMed ID: 23532071
    [TBL] [Abstract][Full Text] [Related]  

  • 22. TF2Network: predicting transcription factor regulators and gene regulatory networks in Arabidopsis using publicly available binding site information.
    Kulkarni SR; Vaneechoutte D; Van de Velde J; Vandepoele K
    Nucleic Acids Res; 2018 Apr; 46(6):e31. PubMed ID: 29272447
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A high resolution map of the Arabidopsis thaliana developmental transcriptome based on RNA-seq profiling.
    Klepikova AV; Kasianov AS; Gerasimov ES; Logacheva MD; Penin AA
    Plant J; 2016 Dec; 88(6):1058-1070. PubMed ID: 27549386
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-Wide Identification and Characterization of PIN-FORMED (PIN) Gene Family Reveals Role in Developmental and Various Stress Conditions in
    Kumar M; Kherawat BS; Dey P; Saha D; Singh A; Bhatia SK; Ghodake GS; Kadam AA; Kim HU; Manorama ; Chung SM; Kesawat MS
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299014
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Step-by-Step Construction of Gene Co-expression Networks from High-Throughput Arabidopsis RNA Sequencing Data.
    Contreras-López O; Moyano TC; Soto DC; Gutiérrez RA
    Methods Mol Biol; 2018; 1761():275-301. PubMed ID: 29525965
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phloem Companion Cell-Specific Transcriptomic and Epigenomic Analyses Identify MRF1, a Regulator of Flowering.
    You Y; Sawikowska A; Lee JE; Benstein RM; Neumann M; Krajewski P; Schmid M
    Plant Cell; 2019 Feb; 31(2):325-345. PubMed ID: 30670485
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools.
    Lamesch P; Berardini TZ; Li D; Swarbreck D; Wilks C; Sasidharan R; Muller R; Dreher K; Alexander DL; Garcia-Hernandez M; Karthikeyan AS; Lee CH; Nelson WD; Ploetz L; Singh S; Wensel A; Huala E
    Nucleic Acids Res; 2012 Jan; 40(Database issue):D1202-10. PubMed ID: 22140109
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genome-wide computational function prediction of Arabidopsis proteins by integration of multiple data sources.
    Kourmpetis YA; van Dijk AD; van Ham RC; ter Braak CJ
    Plant Physiol; 2011 Jan; 155(1):271-81. PubMed ID: 21098674
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional bioinformatics for Arabidopsis thaliana.
    Clare A; Karwath A; Ougham H; King RD
    Bioinformatics; 2006 May; 22(9):1130-6. PubMed ID: 16481336
    [TBL] [Abstract][Full Text] [Related]  

  • 30. From experiment-driven database analyses to database-driven experiments in Arabidopsis thaliana transcription factor research.
    Hehl R
    Plant Sci; 2017 Sep; 262():141-147. PubMed ID: 28716409
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of microRNA-regulated protein interaction pathways in Arabidopsis using machine learning algorithms.
    Kurubanjerdjit N; Huang CH; Lee YL; Tsai JJ; Ng KL
    Comput Biol Med; 2013 Nov; 43(11):1645-52. PubMed ID: 24209909
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NASCArrays: a repository for microarray data generated by NASC's transcriptomics service.
    Craigon DJ; James N; Okyere J; Higgins J; Jotham J; May S
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D575-7. PubMed ID: 14681484
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular characterisation of the STRUBBELIG-RECEPTOR FAMILY of genes encoding putative leucine-rich repeat receptor-like kinases in Arabidopsis thaliana.
    Eyüboglu B; Pfister K; Haberer G; Chevalier D; Fuchs A; Mayer KF; Schneitz K
    BMC Plant Biol; 2007 Mar; 7():16. PubMed ID: 17397538
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational prediction of novel non-coding RNAs in Arabidopsis thaliana.
    Song D; Yang Y; Yu B; Zheng B; Deng Z; Lu BL; Chen X; Jiang T
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S36. PubMed ID: 19208137
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genes co-expressed with CPSAR1 identified using ATTED-II.
    Khan NZ; Garcia C; Aronsson H
    Plant Signal Behav; 2010 Sep; 5(9):1141-3. PubMed ID: 20729628
    [TBL] [Abstract][Full Text] [Related]  

  • 36. AraPath: a knowledgebase for pathway analysis in Arabidopsis.
    Lai L; Liberzon A; Hennessey J; Jiang G; Qi J; Mesirov JP; Ge SX
    Bioinformatics; 2012 Sep; 28(17):2291-2. PubMed ID: 22760305
    [TBL] [Abstract][Full Text] [Related]  

  • 37. TEA: the epigenome platform for Arabidopsis methylome study.
    Su SY; Chen SH; Lu IH; Chiang YS; Wang YB; Chen PY; Lin CY
    BMC Genomics; 2016 Dec; 17(Suppl 13):1027. PubMed ID: 28155665
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The predicted Arabidopsis interactome resource and network topology-based systems biology analyses.
    Lin M; Zhou X; Shen X; Mao C; Chen X
    Plant Cell; 2011 Mar; 23(3):911-22. PubMed ID: 21441435
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome-Wide Analysis of the Distinct Types of Chromatin Interactions in Arabidopsis thaliana.
    Wang J; Zhou Y; Li X; Meng X; Fan M; Chen H; Xue J; Chen M
    Plant Cell Physiol; 2017 Jan; 58(1):57-70. PubMed ID: 28064247
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Systematic identification of functional plant modules through the integration of complementary data sources.
    Heyndrickx KS; Vandepoele K
    Plant Physiol; 2012 Jul; 159(3):884-901. PubMed ID: 22589469
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.