BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 34695495)

  • 1. Influence of cellulose nanocrystal addition on the production and characterization of bacterial nanocellulose.
    Bang WY; Adedeji OE; Kang HJ; Kang MD; Yang J; Lim YW; Jung YH
    Int J Biol Macromol; 2021 Dec; 193(Pt A):269-275. PubMed ID: 34695495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1.
    Abol-Fotouh D; Hassan MA; Shokry H; Roig A; Azab MS; Kashyout AEB
    Sci Rep; 2020 Feb; 10(1):3491. PubMed ID: 32103077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of carbon sources from sugar industry to bacterial nanocellulose produced by Komagataeibacter xylinus.
    Jaroennonthasit W; Lam NT; Sukyai P
    Int J Biol Macromol; 2021 Nov; 191():299-304. PubMed ID: 34530037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Addition of Various Cellulosic Components to Bacterial Nanocellulose: A Comparison of Surface Qualities and Crystalline Properties.
    Bang WY; Kim DH; Kang MD; Yang J; Huh T; Lim YW; Jung YH
    J Microbiol Biotechnol; 2021 Oct; 31(10):1366-1372. PubMed ID: 34319261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From rotten grapes to industrial exploitation: Komagataeibacter europaeus SGP37, a micro-factory for macroscale production of bacterial nanocellulose.
    Dubey S; Sharma RK; Agarwal P; Singh J; Sinha N; Singh RP
    Int J Biol Macromol; 2017 Mar; 96():52-60. PubMed ID: 27939511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulosic Nanomaterial Production Via Fermentation by
    Park MS; Jung YH; Oh SY; Kim MJ; Bang WY; Lim YW
    J Microbiol Biotechnol; 2019 Apr; 29(4):617-624. PubMed ID: 30856704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Valorization of fruit processing waste to produce high value-added bacterial nanocellulose by a novel strain Komagataeibacter xylinus IITR DKH20.
    Khan H; Saroha V; Raghuvanshi S; Bharti AK; Dutt D
    Carbohydr Polym; 2021 May; 260():117807. PubMed ID: 33712153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural changes of bacterial nanocellulose pellicles induced by genetic modification of Komagataeibacter hansenii ATCC 23769.
    Jacek P; Ryngajłło M; Bielecki S
    Appl Microbiol Biotechnol; 2019 Jul; 103(13):5339-5353. PubMed ID: 31037382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of production process scale-up on the characteristics and properties of bacterial nanocellulose obtained from overripe Banana culture medium.
    Molina-Ramírez C; Cañas-Gutiérrez A; Castro C; Zuluaga R; Gañán P
    Carbohydr Polym; 2020 Jul; 240():116341. PubMed ID: 32475595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced ultrafine nanofibril biosynthesis of bacterial nanocellulose using a low-cost material by the adapted strain of Komagataeibacter xylinus MSKU 12.
    Naloka K; Matsushita K; Theeragool G
    Int J Biol Macromol; 2020 May; 150():1113-1120. PubMed ID: 31739023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of alternative energy sources on bacterial cellulose characteristics produced by Komagataeibacter medellinensis.
    Molina-Ramírez C; Enciso C; Torres-Taborda M; Zuluaga R; Gañán P; Rojas OJ; Castro C
    Int J Biol Macromol; 2018 Oct; 117():735-741. PubMed ID: 29847783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of nanocellulose production by strains of Komagataeibacter sp. isolated from organic waste and Kombucha.
    Gupte Y; Kulkarni A; Raut B; Sarkar P; Choudhury R; Chawande A; Kumar GRK; Bhadra B; Satapathy A; Das G; Vishnupriya B; Dasgupta S
    Carbohydr Polym; 2021 Aug; 266():118176. PubMed ID: 34044916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production and characterization of Komagataeibacter xylinus SGP8 nanocellulose and its calcite based composite for removal of Cd ions.
    Bhattacharya A; Sadaf A; Dubey S; Singh RP; Khare SK
    Environ Sci Pollut Res Int; 2021 Sep; 28(34):46423-46430. PubMed ID: 32335838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of genetic manipulation and in situ modifications on production of bacterial nanocellulose: A review.
    Moradi M; Jacek P; Farhangfar A; Guimarães JT; Forough M
    Int J Biol Macromol; 2021 Jul; 183():635-650. PubMed ID: 33957199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of productivity and quality of bacterial nanocellulose synthesized using culture media based on seven sugars from biomass.
    Chen G; Wu G; Chen L; Wang W; Hong FF; Jönsson LJ
    Microb Biotechnol; 2019 Jul; 12(4):677-687. PubMed ID: 30912251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of bacterial nanocellulose properties through mutation of motility related genes in Komagataeibacter hansenii ATCC 53582.
    Jacek P; Kubiak K; Ryngajłło M; Rytczak P; Paluch P; Bielecki S
    N Biotechnol; 2019 Sep; 52():60-68. PubMed ID: 31096013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterisation of bacterial nanocellulose and nanostructured carbon produced from crude glycerol by Komagataeibacter sucrofermentans.
    Lee S; Abraham A; Lim ACS; Choi O; Seo JG; Sang BI
    Bioresour Technol; 2021 Dec; 342():125918. PubMed ID: 34555748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advancement in isolation, processing, characterization and applications of emerging nanocellulose: A review.
    Noremylia MB; Hassan MZ; Ismail Z
    Int J Biol Macromol; 2022 May; 206():954-976. PubMed ID: 35304199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus.
    Fan X; Gao Y; He W; Hu H; Tian M; Wang K; Pan S
    Carbohydr Polym; 2016 Oct; 151():1068-1072. PubMed ID: 27474656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards control of cellulose biosynthesis by Komagataeibacter using systems-level and strain engineering strategies: current progress and perspectives.
    Ryngajłło M; Jędrzejczak-Krzepkowska M; Kubiak K; Ludwicka K; Bielecki S
    Appl Microbiol Biotechnol; 2020 Aug; 104(15):6565-6585. PubMed ID: 32529377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.