These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34695777)

  • 21. Phenothiazine inhibitors of trypanothione reductase as potential antitrypanosomal and antileishmanial drugs.
    Chan C; Yin H; Garforth J; McKie JH; Jaouhari R; Speers P; Douglas KT; Rock PJ; Yardley V; Croft SL; Fairlamb AH
    J Med Chem; 1998 Jan; 41(2):148-56. PubMed ID: 9457238
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antileishmanial activity and trypanothione reductase effects of terpenes from the Amazonian species Croton cajucara Benth (Euphorbiaceae).
    Lima GS; Castro-Pinto DB; Machado GC; Maciel MA; Echevarria A
    Phytomedicine; 2015 Nov; 22(12):1133-7. PubMed ID: 26547537
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pyrrolo[1,2-a]quinoxal-5-inium salts and 4,5-dihydropyrrolo[1,2-a]quinoxalines: Synthesis, activity and computational docking for protein tyrosine phosphatase 1B.
    Sánchez-Alonso P; Griera M; García-Marín J; Rodríguez-Puyol M; Alajarín R; Vaquero JJ; Rodríguez-Puyol D
    Bioorg Med Chem; 2021 Aug; 44():116295. PubMed ID: 34246920
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In silico identification and evaluation of new Trypanosoma cruzi trypanothione reductase (TcTR) inhibitors obtained from natural products database of the Bahia semi-arid region (NatProDB).
    da Paixão VG; Pita SSDR
    Comput Biol Chem; 2019 Apr; 79():36-47. PubMed ID: 30710804
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Discovery of new organoselenium compounds as antileishmanial agents.
    Al-Tamimi AS; Etxebeste-Mitxeltorena M; Sanmartín C; Jiménez-Ruiz A; Syrjänen L; Parkkila S; Selleri S; Carta F; Angeli A; Supuran CT
    Bioorg Chem; 2019 May; 86():339-345. PubMed ID: 30743174
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis and evaluation of 9,9-dimethylxanthene tricyclics against trypanothione reductase, Trypanosoma brucei, Trypanosoma cruzi and Leishmania donovani.
    Chibale K; Visser M; Yardley V; Croft SL; Fairlamb AH
    Bioorg Med Chem Lett; 2000 Jun; 10(11):1147-50. PubMed ID: 10866368
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular docking studies of selected tricyclic and quinone derivatives on trypanothione reductase of Leishmania infantum.
    Venkatesan SK; Shukla AK; Dubey VK
    J Comput Chem; 2010 Oct; 31(13):2463-75. PubMed ID: 20340105
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improved tricyclic inhibitors of trypanothione reductase by screening and chemical synthesis.
    Richardson JL; Nett IR; Jones DC; Abdille MH; Gilbert IH; Fairlamb AH
    ChemMedChem; 2009 Aug; 4(8):1333-40. PubMed ID: 19557801
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and synthesis of a new series of 3,5-disubstituted isoxazoles active against Trypanosoma cruzi and Leishmania amazonensis.
    da Rosa R; de Moraes MH; Zimmermann LA; Schenkel EP; Steindel M; Bernardes LSC
    Eur J Med Chem; 2017 Mar; 128():25-35. PubMed ID: 28152426
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The synthesis of parasitic cysteine protease and trypanothione reductase inhibitors.
    Chibale K; Musonda CC
    Curr Med Chem; 2003 Sep; 10(18):1863-89. PubMed ID: 12871109
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thiol redox biology of trypanosomatids and potential targets for chemotherapy.
    Leroux AE; Krauth-Siegel RL
    Mol Biochem Parasitol; 2016; 206(1-2):67-74. PubMed ID: 26592324
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A fast virtual screening approach to identify structurally diverse inhibitors of trypanothione reductase.
    Maccari G; Jaeger T; Moraca F; Biava M; Flohé L; Botta M
    Bioorg Med Chem Lett; 2011 Sep; 21(18):5255-8. PubMed ID: 21807515
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The repertoire of iron superoxide dismutases from
    García-Soriano JC; de Lucio H; Elvira-Blázquez D; Alcón-Calderón M; Sanz Del Olmo N; Sánchez-Murcia PA; Ortega P; de la Mata FJ; Jiménez-Ruiz A
    J Enzyme Inhib Med Chem; 2024 Dec; 39(1):2377586. PubMed ID: 39037009
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Drug-like molecules with anti-trypanothione synthetase activity identified by high throughput screening.
    Benítez D; Franco J; Sardi F; Leyva A; Durán R; Choi G; Yang G; Kim T; Kim N; Heo J; Kim K; Lee H; Choi I; Radu C; Shum D; No JH; Comini MA
    J Enzyme Inhib Med Chem; 2022 Dec; 37(1):912-929. PubMed ID: 35306933
    [TBL] [Abstract][Full Text] [Related]  

  • 35.
    Matadamas-Martínez F; Hernández-Campos A; Téllez-Valencia A; Vázquez-Raygoza A; Comparán-Alarcón S; Yépez-Mulia L; Castillo R
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31487860
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improved inhibitors of trypanothione reductase by combination of motifs: synthesis, inhibitory potency, binding mode, and antiprotozoal activities.
    Eberle C; Lauber BS; Fankhauser D; Kaiser M; Brun R; Krauth-Siegel RL; Diederich F
    ChemMedChem; 2011 Feb; 6(2):292-301. PubMed ID: 21275053
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure-based virtual screening, molecular docking, ADMET and molecular simulations to develop benzoxaborole analogs as potential inhibitor against Leishmania donovani trypanothione reductase.
    Pandey RK; Kumbhar BV; Sundar S; Kunwar A; Prajapati VK
    J Recept Signal Transduct Res; 2017 Feb; 37(1):60-70. PubMed ID: 27147242
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trypanothione reductase activity is prominent in metacyclic promastigotes and axenic amastigotes of Leishmania amazonesis. Evaluation of its potential as a therapeutic target.
    Castro-Pinto DB; Echevarria A; Genestra MS; Cysne-Finkelstein L; Leon LL
    J Enzyme Inhib Med Chem; 2004 Feb; 19(1):57-63. PubMed ID: 15202494
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In silico molecular docking studies of new potential 4-phthalazinyl-hydrazones on selected Trypanosoma cruzi and Leishmania enzyme targets.
    Romero AH; López SE
    J Mol Graph Model; 2017 Sep; 76():313-329. PubMed ID: 28763686
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigation of trypanothione reductase as a drug target in Trypanosoma brucei.
    Spinks D; Shanks EJ; Cleghorn LA; McElroy S; Jones D; James D; Fairlamb AH; Frearson JA; Wyatt PG; Gilbert IH
    ChemMedChem; 2009 Dec; 4(12):2060-9. PubMed ID: 19924760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.