These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34695920)

  • 1. Design, Manufacturing, and Control of a Pneumatic-Driven Passive Robotic Gait Training System for Muscle-Weakness in a Lower Limb.
    Li IH; Lin YS; Lee LW; Lin WT
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pneumatic interactive gait rehabilitation orthosis: design and preliminary testing.
    Belforte G; Eula G; Appendino S; Sirolli S
    Proc Inst Mech Eng H; 2011 Feb; 225(2):158-69. PubMed ID: 21428150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Lower Limb Rehabilitation Assistance Training Robot System Driven by an Innovative Pneumatic Artificial Muscle System.
    Tsai TC; Chiang MH
    Soft Robot; 2023 Feb; 10(1):1-16. PubMed ID: 35196171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An intrinsically compliant robotic orthosis for treadmill training.
    Hussain S; Xie SQ; Jamwal PK; Parsons J
    Med Eng Phys; 2012 Dec; 34(10):1448-53. PubMed ID: 22421099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of body weight support gait training system using pneumatic Mckibben actuators -control of lower extremity orthosis.
    Mat Dzahir MA; Nobutomo T; Yamamoto SI
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6417-20. PubMed ID: 24111210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modified Computed Torque Control of a Robotic Orthosis for Gait Rehabilitation.
    Dao QT; Yamamoto SI
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1719-1722. PubMed ID: 30440726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of gait training system powered by pneumatic actuator like human musculoskeletal system.
    Yamamoto S; Shibata Y; Imai S; Nobutomo T; Miyoshi T
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975452. PubMed ID: 22275650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of body weight support gait training system using antagonistic bi-articular muscle model.
    Shibata Y; Imai S; Nobutomo T; Miyoshi T; Yamamoto S
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4468-71. PubMed ID: 21095773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the amount of body weight support on lower limb joints' kinematics during treadmill walking at different gait speeds: Reference data on healthy adults to define trajectories for robot assistance.
    Ferrarin M; Rabuffetti M; Geda E; Sirolli S; Marzegan A; Bruno V; Sacco K
    Proc Inst Mech Eng H; 2018 Jun; 232(6):619-627. PubMed ID: 29890931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of body weight support variation on muscle activities during robot assisted gait: a dynamic simulation study.
    Hussain S; Jamwal PK; Ghayesh MH
    Comput Methods Biomech Biomed Engin; 2017 May; 20(6):626-635. PubMed ID: 28349768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. State-of-the-art robotic gait rehabilitation orthoses: design and control aspects.
    Hussain S
    NeuroRehabilitation; 2014; 35(4):701-9. PubMed ID: 25318783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of an Assistive Control Approach Applied in an Active Knee Orthosis Plus Walker for Post-Stroke Gait Rehabilitation.
    Villa-Parra AC; Lima J; Delisle-Rodriguez D; Vargas-Valencia L; Frizera-Neto A; Bastos T
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32357405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pneumatic Quasi-Passive Actuation for Soft Assistive Lower Limbs Exoskeleton.
    Di Natali C; Sadeghi A; Mondini A; Bottenberg E; Hartigan B; De Eyto A; O'Sullivan L; Rocon E; Stadler K; Mazzolai B; Caldwell DG; Ortiz J
    Front Neurorobot; 2020; 14():31. PubMed ID: 32714175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. User-Adaptive Assistance of Assistive Knee Braces for Gait Rehabilitation.
    Ma H; Zhong C; Chen B; Chan KM; Liao WH
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):1994-2005. PubMed ID: 30188836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A pilot study on the design and validation of a hybrid exoskeleton robotic device for hand rehabilitation.
    Haghshenas-Jaryani M; Patterson RM; Bugnariu N; Wijesundara MBJ
    J Hand Ther; 2020; 33(2):198-208. PubMed ID: 32423846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive impedance control of a robotic orthosis for gait rehabilitation.
    Hussain S; Xie SQ; Jamwal PK
    IEEE Trans Cybern; 2013 Jun; 43(3):1025-34. PubMed ID: 23193241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved Active Disturbance Rejection Control for Trajectory Tracking Control of Lower Limb Robotic Rehabilitation Exoskeleton.
    Aole S; Elamvazuthi I; Waghmare L; Patre B; Meriaudeau F
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32630115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single joint robotic orthoses for gait rehabilitation: An educational technical review.
    Hussain S; Jamwal PK; Ghayesh MH
    J Rehabil Med; 2016 Apr; 48(4):333-8. PubMed ID: 26936800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an unpowered ankle exoskeleton for walking assist.
    Leclair J; Pardoel S; Helal A; Doumit M
    Disabil Rehabil Assist Technol; 2020 Jan; 15(1):1-13. PubMed ID: 30132353
    [No Abstract]   [Full Text] [Related]  

  • 20. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study.
    Bortole M; Venkatakrishnan A; Zhu F; Moreno JC; Francisco GE; Pons JL; Contreras-Vidal JL
    J Neuroeng Rehabil; 2015 Jun; 12():54. PubMed ID: 26076696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.