These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 34695937)

  • 1. Control of Dynamic Positioning System with Disturbance Observer for Autonomous Marine Surface Vessels.
    Tomera M; Podgórski K
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive disturbance rejection for course tracking of marine vessels under actuator constraint.
    Hu X; Wei X; Han J; Zhang Q
    ISA Trans; 2020 May; 100():82-91. PubMed ID: 31784046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive Robust Output Feedback Control for a Marine Dynamic Positioning System Based on a High-Gain Observer.
    Du J; Hu X; Liu H; Chen CL
    IEEE Trans Neural Netw Learn Syst; 2015 Nov; 26(11):2775-86. PubMed ID: 25769172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive Neural Backstepping Sliding Mode Heading Control for Underactuated Ships with Drift Angle and Ship-Bank Interaction.
    Han X
    Comput Intell Neurosci; 2020; 2020():8854055. PubMed ID: 33082777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive output feedback control of flexible-joint robots using neural networks: dynamic surface design approach.
    Yoo SJ; Park JB; Choi YH
    IEEE Trans Neural Netw; 2008 Oct; 19(10):1712-26. PubMed ID: 18842476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive Neural Control of Underactuated Surface Vessels With Prescribed Performance Guarantees.
    Dai SL; He S; Wang M; Yuan C
    IEEE Trans Neural Netw Learn Syst; 2019 Dec; 30(12):3686-3698. PubMed ID: 30418926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Output Feedback Control of Micromechanical Gyroscopes Using Neural Networks and Disturbance Observer.
    Zhang R; Xu B; Shi P
    IEEE Trans Neural Netw Learn Syst; 2022 Mar; 33(3):962-972. PubMed ID: 33119514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data-Driven Adaptive Disturbance Observers for Model-Free Trajectory Tracking Control of Maritime Autonomous Surface Ships.
    Peng Z; Wang D; Wang J
    IEEE Trans Neural Netw Learn Syst; 2021 Dec; 32(12):5584-5594. PubMed ID: 34255635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disturbance observer-based backstepping sliding mode fault-tolerant control for the hydro-turbine governing system with dead-zone input.
    Yi Y; Chen D
    ISA Trans; 2019 May; 88():127-141. PubMed ID: 30577999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Course Control of Underactuated Ship Based on Nonlinear Robust Neural Network Backstepping Method.
    Yuan J; Meng H; Zhu Q; Zhou J
    Comput Intell Neurosci; 2016; 2016():3013280. PubMed ID: 27293422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive Anti-Disturbance Control for Systems With Saturating Input via Dynamic Neural Network Disturbance Modeling.
    Yi Y; Zheng WX; Liu B
    IEEE Trans Cybern; 2022 Jun; 52(6):5290-5300. PubMed ID: 33232251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Backstepping Control for a Class of Nonlinear Discrete-Time Systems Subject to Multisource Disturbances and Actuator Saturation.
    Yu Y; Yuan Y; Liu H
    IEEE Trans Cybern; 2022 Oct; 52(10):10924-10936. PubMed ID: 33909583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trajectory exponential tracking control of unmanned surface ships with external disturbance and system uncertainties.
    Qu Y; Xiao B; Fu Z; Yuan D
    ISA Trans; 2018 Jul; 78():47-55. PubMed ID: 29921420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive Discrete-Time Flight Control Using Disturbance Observer and Neural Networks.
    Shao S; Chen M; Zhang Y
    IEEE Trans Neural Netw Learn Syst; 2019 Dec; 30(12):3708-3721. PubMed ID: 30763247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sideslip-Compensated Guidance-Based Adaptive Neural Control of Marine Surface Vessels.
    Rout R; Cui R; Yan W
    IEEE Trans Cybern; 2022 May; 52(5):2860-2871. PubMed ID: 33055044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential Evolution Algorithm-Based Iterative Sliding Mode Control of Underactuated Ship Motion.
    Yan H; Xiao Y; Li Q; Wang R
    Comput Intell Neurosci; 2021; 2021():4675408. PubMed ID: 34925488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupled-disturbance-observer-based position tracking control for a cascade electro-hydraulic system.
    Guo Q; Yin JM; Yu T; Jiang D
    ISA Trans; 2017 May; 68():367-380. PubMed ID: 28279430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observer-based backstepping control method using reduced lateral dynamics for autonomous lane-keeping system.
    Kang CM; Kim W; Chung CC
    ISA Trans; 2018 Dec; 83():214-226. PubMed ID: 30292400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust Fixed-Time H∞ Trajectory Tracking Control for Marine Surface Vessels Based on a Self-Structuring Neural Network.
    Tian X; Wang Z; Yuan J; Liu H
    Comput Intell Neurosci; 2022; 2022():6515773. PubMed ID: 35845876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Surface Control Using Neural Networks for a Class of Uncertain Nonlinear Systems With Input Saturation.
    Chen M; Tao G; Jiang B
    IEEE Trans Neural Netw Learn Syst; 2015 Sep; 26(9):2086-97. PubMed ID: 25494515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.