These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 34695974)

  • 1. Experimentally Verified Analytical Models of Piezoelectric Cantilevers in Different Design Configurations.
    Machu Z; Rubes O; Sevecek O; Hadas Z
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Energy Harvesting Enhancement in Piezoelectric Unimorph Cantilevers.
    Rahimzadeh M; Samadi H; Mohammadi NS
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental and analytical parametric study of single-crystal unimorph beams for vibration energy harvesting.
    Karami MA; Bilgen O; Inman DJ; Friswell MI
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1508-20. PubMed ID: 21768034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Development of a Lead-Freepiezoelectric Energy Harvester for Wideband, Low Frequency, and Low Amplitude Vibrations.
    Kumari N; Rakotondrabe M
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrode Coverage Optimization for Piezoelectric Energy Harvesting from Tip Excitation.
    Fu H; Chen G; Bai N
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29518934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Versatile Model for Describing Energy Harvesting Characteristics of Composite-Laminated Piezoelectric Cantilever Patches.
    Xue X; Sun Q; Ma Q; Wang J
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design optimization of PVDF-based piezoelectric energy harvesters.
    Song J; Zhao G; Li B; Wang J
    Heliyon; 2017 Sep; 3(9):e00377. PubMed ID: 28948235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental Characterization of Optimized Piezoelectric Energy Harvesters for Wearable Sensor Networks.
    Gljušćić P; Zelenika S
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis and Experimental Validation of a Piezoelectric Harvester with Enhanced Frequency Bandwidth.
    Abramovich H; Har-Nes I
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 30029562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance Evaluation of a Piezoelectric Energy Harvester Based on Flag-Flutter.
    Elahi H; Eugeni M; Fune F; Lampani L; Mastroddi F; Paolo Romano G; Gaudenzi P
    Micromachines (Basel); 2020 Oct; 11(10):. PubMed ID: 33066434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Nonlinear Piezoelectric Energy Harvesting System Based on Linear-Element Coupling: Design, Modeling and Dynamic Analysis.
    Zhou S; Yan B; Inman DJ
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29747445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micromachining of a bimorph Pb(Zr,Ti)O3 (PZT) cantilever using a micro-electromechanical systems (MEMS) process for energy harvesting application.
    Kim M; Hwang B; Jeong J; Min NK; Kwon KH
    J Nanosci Nanotechnol; 2012 Jul; 12(7):6011-5. PubMed ID: 22966699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-Frequency and Broadband Vibration Energy Harvesting Using Base-Mounted Piezoelectric Transducers.
    Koven R; Mills M; Gale R; Aksak B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Nov; 64(11):1735-1743. PubMed ID: 28816659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy harvesting performance of piezoelectric ceramic and polymer nanowires.
    Crossley S; Kar-Narayan S
    Nanotechnology; 2015 Aug; 26(34):344001. PubMed ID: 26234477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Review of Piezoelectric Vibration Energy Harvesting with Magnetic Coupling Based on Different Structural Characteristics.
    Jiang J; Liu S; Feng L; Zhao D
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33919932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical and Experimental Investigation of a Curved Piezoelectric Energy Harvester.
    Pourashraf T; Bonello P; Truong J
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of an Impact-Based Frequency Up-Converted Piezoelectric Vibration Energy Harvester for Wearable Devices.
    Aceti P; Rosso M; Ardito R; Pienazza N; Nastro A; Baù M; Ferrari M; Rouvala M; Ferrari V; Corigliano A
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical investigations of energy harvesting efficiency from structural vibrations using piezoelectric and electromagnetic oscillators.
    Harne RL
    J Acoust Soc Am; 2012 Jul; 132(1):162-72. PubMed ID: 22779465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On Mechanical and Electrical Coupling Determination at Piezoelectric Harvester by Customized Algorithm Modeling and Measurable Properties.
    Perez-Alfaro I; Gil-Hernandez D; Murillo N; Bernal C
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Segmentation of a Vibro-Shock Cantilever-Type Piezoelectric Energy Harvester Operating in Higher Transverse Vibration Modes.
    Zizys D; Gaidys R; Dauksevicius R; Ostasevicius V; Daniulaitis V
    Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26703623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.