These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 34695986)

  • 1. Unsupervised Learning with Generative Adversarial Network for Automatic Tire Defect Detection from X-ray Images.
    Wang Y; Zhang Y; Zheng L; Yin L; Chen J; Lu J
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the Possibilities of Tire-Defect Inspection Based on Unsupervised Learning and Deep Learning.
    Kuric I; Klarák J; Sága M; Císar M; Hajdučík A; Wiecek D
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Precision Detection of Defects of Tire Texture Through X-ray Imaging Based on Local Inverse Difference Moment Features.
    Zhao G; Qin S
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30072636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsupervised X-ray image segmentation with task driven generative adversarial networks.
    Zhang Y; Miao S; Mansi T; Liao R
    Med Image Anal; 2020 May; 62():101664. PubMed ID: 32120268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inception-GAN for Semi-supervised Detection of Pneumonia in Chest X-rays.
    Motamed S; Khalvati F
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3774-3778. PubMed ID: 34892057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anomaly Detection and Automatic Labeling for Solar Cell Quality Inspection Based on Generative Adversarial Network.
    Balzategui J; Eciolaza L; Maestro-Watson D
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34202285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DG-GAN: A High Quality Defect Image Generation Method for Defect Detection.
    He X; Luo Z; Li Q; Chen H; Li F
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The defect detection for X-ray images based on a new lightweight semantic segmentation network.
    Yi X; Peng C; Zhang Z; Xiao L
    Math Biosci Eng; 2022 Feb; 19(4):4178-4195. PubMed ID: 35341293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anomaly Detection Neural Network with Dual Auto-Encoders GAN and Its Industrial Inspection Applications.
    Tang TW; Kuo WH; Lan JH; Ding CF; Hsu H; Young HT
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32545489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unsupervised anomaly detection for posteroanterior chest X-rays using multiresolution patch-based self-supervised learning.
    Kim M; Moon KR; Lee BD
    Sci Rep; 2023 Feb; 13(1):3415. PubMed ID: 36854967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unsupervised learning of a deep neural network for metal artifact correction using dual-polarity readout gradients.
    Kwon K; Kim D; Kim B; Park H
    Magn Reson Med; 2020 Jan; 83(1):124-138. PubMed ID: 31403219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unsupervised automatic seizure detection for focal-onset seizures recorded with behind-the-ear EEG using an anomaly-detecting generative adversarial network.
    You S; Cho BH; Yook S; Kim JY; Shon YM; Seo DW; Kim IY
    Comput Methods Programs Biomed; 2020 Sep; 193():105472. PubMed ID: 32344271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning from adversarial medical images for X-ray breast mass segmentation.
    Shen T; Gou C; Wang FY; He Z; Chen W
    Comput Methods Programs Biomed; 2019 Oct; 180():105012. PubMed ID: 31421601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generative Adversarial Networks-Based Semi-Supervised Automatic Modulation Recognition for Cognitive Radio Networks.
    Li M; Li O; Liu G; Zhang C
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30428617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Image synthesis of apparel stitching defects using deep convolutional generative adversarial networks.
    Ul-Huda N; Ahmad H; Banjar A; Alzahrani AO; Ahmad I; Naeem MS
    Heliyon; 2024 Feb; 10(4):e26466. PubMed ID: 38420437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic Tile Surface Defect Detection Methodology Based on Self-Attention and Self-Supervised Learning.
    Ling X; Wu Y; Ali R; Zhu H
    Comput Intell Neurosci; 2022; 2022():3003810. PubMed ID: 35965754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Industrial Product Surface Anomaly Detection with Realistic Synthetic Anomalies Based on Defect Map Prediction.
    Peng T; Zheng Y; Zhao L; Zheng E
    Sensors (Basel); 2024 Jan; 24(1):. PubMed ID: 38203128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semi-Supervised Learning for Defect Segmentation with Autoencoder Auxiliary Module.
    Sae-Ang BI; Kumwilaisak W; Kaewtrakulpong P
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tire Speckle Interference Bubble Defect Detection Based on Improved Faster RCNN-FPN.
    Yang S; Jiao D; Wang T; He Y
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semi-Supervised Learning for Low-Dose CT Image Restoration with Hierarchical Deep Generative Adversarial Network (HD-GAN).
    Choi K; Vania M; Kim S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2683-2686. PubMed ID: 31946448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.