These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 34695999)

  • 1. ROBOGait: A Mobile Robotic Platform for Human Gait Analysis in Clinical Environments.
    Guffanti D; Brunete A; Hernando M; Rueda J; Navarro E
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of a Mobile 3D Camera to Evaluate Simulated Pathological Gait in Practical Scenarios.
    Guffanti D; Lemus D; Vallery H; Brunete A; Hernando M; Horemans H
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mobile Robotic Balance Assistant (MRBA): a gait assistive and fall intervention robot for daily living.
    Li L; Foo MJ; Chen J; Tan KY; Cai J; Swaminathan R; Chua KSG; Wee SK; Kuah CWK; Zhuo H; Ang WT
    J Neuroeng Rehabil; 2023 Mar; 20(1):29. PubMed ID: 36859286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical Optimization for Control of Robotic Knee Prostheses Toward Improved Symmetry of Propulsive Impulse.
    Li M; Liu W; Si J; Stallrich JW; Huang H
    IEEE Trans Biomed Eng; 2023 May; 70(5):1634-1642. PubMed ID: 36417736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An arm for a leg: Adapting a robotic arm for gait rehabilitation.
    Franchi G; Viereck U; Platt R; Yen SC; Hasson CJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3929-32. PubMed ID: 26737153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of robotic gait rehabilitation on biomechanical parameters in the chronic hemiplegic patients.
    Wallard L; Dietrich G; Kerlirzin Y; Bredin J
    Neurophysiol Clin; 2015 Sep; 45(3):215-9. PubMed ID: 26381192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a Prototype Overground Pelvic Obliquity Support Robot for Rehabilitation of Hemiplegia Gait.
    Hwang S; Lee S; Shin D; Baek I; Ham S; Kim W
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the amount of body weight support on lower limb joints' kinematics during treadmill walking at different gait speeds: Reference data on healthy adults to define trajectories for robot assistance.
    Ferrarin M; Rabuffetti M; Geda E; Sirolli S; Marzegan A; Bruno V; Sacco K
    Proc Inst Mech Eng H; 2018 Jun; 232(6):619-627. PubMed ID: 29890931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of camera viewing angles on tracking kinematic gait patterns using Azure Kinect, Kinect v2 and Orbbec Astra Pro v2.
    Yeung LF; Yang Z; Cheng KC; Du D; Tong RK
    Gait Posture; 2021 Jun; 87():19-26. PubMed ID: 33878509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collaborative robotic biomechanical interactions and gait adjustments in young, non-impaired individuals.
    Dionisio VC; Brown DA
    J Neuroeng Rehabil; 2016 Jun; 13(1):57. PubMed ID: 27306027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study.
    Fleerkotte BM; Koopman B; Buurke JH; van Asseldonk EH; van der Kooij H; Rietman JS
    J Neuroeng Rehabil; 2014 Mar; 11():26. PubMed ID: 24594284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery and compensation after robotic assisted gait training in chronic stroke survivors.
    De Luca A; Vernetti H; Capra C; Pisu I; Cassiano C; Barone L; Gaito F; Danese F; Antonio Checchia G; Lentino C; Giannoni P; Casadio M
    Disabil Rehabil Assist Technol; 2019 Nov; 14(8):826-838. PubMed ID: 29741134
    [No Abstract]   [Full Text] [Related]  

  • 13. A Single RGB Camera Based Gait Analysis With A Mobile Tele-Robot For Healthcare.
    Wang Z; Deligianni F; Voiculescu I; Yang GZ
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6933-6936. PubMed ID: 34892698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Verification of validity of gait analysis systems during treadmill walking and running using human pose tracking algorithm.
    Ota M; Tateuchi H; Hashiguchi T; Ichihashi N
    Gait Posture; 2021 Mar; 85():290-297. PubMed ID: 33636458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton.
    del-Ama AJ; Gil-Agudo A; Pons JL; Moreno JC
    J Neuroeng Rehabil; 2014 Mar; 11():27. PubMed ID: 24594302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofeedback for robotic gait rehabilitation.
    Lünenburger L; Colombo G; Riener R
    J Neuroeng Rehabil; 2007 Jan; 4():1. PubMed ID: 17244363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enabling Gait Analysis in the Telemedicine Practice through Portable and Accurate 3D Human Pose Estimation.
    Martini E; Boldo M; Aldegheri S; Valè N; Filippetti M; Smania N; Bertucco M; Picelli A; Bombieri N
    Comput Methods Programs Biomed; 2022 Oct; 225():107016. PubMed ID: 35907374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. State-of-the-art robotic gait rehabilitation orthoses: design and control aspects.
    Hussain S
    NeuroRehabilitation; 2014; 35(4):701-9. PubMed ID: 25318783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical effects of robot assisted walking on knee joint kinematics and muscle activation pattern.
    Thangavel P; Vidhya S; Li J; Chew E; Bezerianos A; Yu H
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():252-257. PubMed ID: 28813827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concurrent assessment of gait kinematics using marker-based and markerless motion capture.
    Kanko RM; Laende EK; Davis EM; Selbie WS; Deluzio KJ
    J Biomech; 2021 Oct; 127():110665. PubMed ID: 34380101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.