These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 34696009)

  • 21. A Piezo-Electromagnetic Coupling Multi-Directional Vibration Energy Harvester Based on Frequency Up-Conversion Technique.
    Shi G; Chen J; Peng Y; Shi M; Xia H; Wang X; Ye Y; Xia Y
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31940778
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling and Efficiency Analysis of a Piezoelectric Energy Harvester Based on the Flow Induced Vibration of a Piezoelectric Composite Pipe.
    Zhou M; Al-Furjan MSH; Wang B
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30563059
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of Energy Harvesting Enhancement in Piezoelectric Unimorph Cantilevers.
    Rahimzadeh M; Samadi H; Mohammadi NS
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960555
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Research and Design of Energy-Harvesting System Based on Macro Fiber Composite Cantilever Beam Applied in Low-Frequency and Low-Speed Water Flow.
    Huang R; Zhou J; Shen J; Tian J; Zhou J; Chen W
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930401
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Piezoelectric Particulate Composite for Energy Harvesting from Mechanical Vibration.
    Grzybek D; Kata D; Sikora W; Sapiński B; Micek P; Pamuła H; Huebner J; Rutkowski P
    Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33147792
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance.
    Wang P; Du H
    Rev Sci Instrum; 2015 Jul; 86(7):075002. PubMed ID: 26233403
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detecting Multiple Damages in UHPFRC Beams through Modal Curvature Analysis.
    Sokhangou F; Sorelli L; Chouinard L; Dey P; Conciatori D
    Sensors (Basel); 2024 Feb; 24(3):. PubMed ID: 38339688
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Peculiarities of the third natural frequency vibrations of a cantilever for the improvement of energy harvesting.
    Ostasevicius V; Janusas G; Milasauskaite I; Zilys M; Kizauskiene L
    Sensors (Basel); 2015 May; 15(6):12594-612. PubMed ID: 26029948
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Frequency-based decoupling and finite element model updating in vibration of cable-beam systems.
    Jalali MH; Rideout DG
    J Vib Control; 2022 Jun; 28(11-12):1520-1535. PubMed ID: 35663192
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural Damage Identification Based on Transmissibility in Time Domain.
    Zou Y; Lu X; Yang J; Wang T; He X
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009942
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two-Dimensional Damage Localization Using a Piezoelectric Smart Aggregate Approach-Implementation on Arbitrary Shaped Concrete Plates.
    Marković N; Grdić D; Stojković N; Topličić-Ćurčić G; Živković D
    Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38204069
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multimodal Multidirectional Piezoelectric Vibration Energy Harvester by U-Shaped Structure with Cross-Connected Beams.
    Qin H; Mo S; Jiang X; Shang S; Wang P; Liu Y
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design and Comparative Study of a Small-Stroke Energy Harvesting Floor Based on a Multi-Layer Piezoelectric Beam Structure.
    Zhong X; Wang H; Chen L; Guan M
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630203
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vibration-Based Damage Detection Using Finite Element Modeling and the Metaheuristic Particle Swarm Optimization Algorithm.
    Zacharakis I; Giagopoulos D
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890759
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and fabrication of vibration based energy harvester using microelectromechanical system piezoelectric cantilever for low power applications.
    Kim M; Lee SK; Yang YS; Jeong J; Min NK; Kwon KH
    J Nanosci Nanotechnol; 2013 Dec; 13(12):7932-7. PubMed ID: 24266167
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Piezoelectric energy harvester with double cantilever beam undergoing coupled bending-torsion vibrations by width-splitting method.
    Song J; Sun G; Zeng X; Li X; Bai Q; Zheng X
    Sci Rep; 2022 Jan; 12(1):583. PubMed ID: 35022473
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Review of Piezoelectric Vibration Energy Harvesting with Magnetic Coupling Based on Different Structural Characteristics.
    Jiang J; Liu S; Feng L; Zhao D
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33919932
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Active vibration control of ring-stiffened cylindrical shell structure using macro fiber composite actuators.
    Sohn JW; Jeon J; Choi SB
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7526-32. PubMed ID: 25942820
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Performance Evaluation of a Piezoelectric Energy Harvester Based on Flag-Flutter.
    Elahi H; Eugeni M; Fune F; Lampani L; Mastroddi F; Paolo Romano G; Gaudenzi P
    Micromachines (Basel); 2020 Oct; 11(10):. PubMed ID: 33066434
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Power Density Improvement of Piezoelectric Energy Harvesters via a Novel Hybridization Scheme with Electromagnetic Transduction.
    Li Z; Xin C; Peng Y; Wang M; Luo J; Xie S; Pu H
    Micromachines (Basel); 2021 Jul; 12(7):. PubMed ID: 34357213
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.