These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 34696028)
1. What Are Sheep Doing? Tri-Axial Accelerometer Sensor Data Identify the Diel Activity Pattern of Ewe Lambs on Pasture. Ikurior SJ; Marquetoux N; Leu ST; Corner-Thomas RA; Scott I; Pomroy WE Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696028 [TBL] [Abstract][Full Text] [Related]
2. Gastrointestinal nematode infection affects overall activity in young sheep monitored with tri-axial accelerometers. Ikurior SJ; Pomroy WE; Scott I; Corner-Thomas R; Marquetoux N; Leu ST Vet Parasitol; 2020 Jul; 283():109188. PubMed ID: 32693323 [TBL] [Abstract][Full Text] [Related]
3. Gait and posture discrimination in sheep using a tri-axial accelerometer. Radeski M; Ilieski V Animal; 2017 Jul; 11(7):1249-1257. PubMed ID: 27903315 [TBL] [Abstract][Full Text] [Related]
4. Quantifying the frequency and volume of urine deposition by grazing sheep using tri-axial accelerometers. Marsden KA; Lush L; Holmberg JA; Harris IM; Whelan MJ; Webb S; King AJ; Wilson RP; Jones DL; Charteris AF; Cardenas LM; Chadwick DR Animal; 2021 Jun; 15(6):100234. PubMed ID: 34098494 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of sampling frequency, window size and sensor position for classification of sheep behaviour. Walton E; Casey C; Mitsch J; Vázquez-Diosdado JA; Yan J; Dottorini T; Ellis KA; Winterlich A; Kaler J R Soc Open Sci; 2018 Feb; 5(2):171442. PubMed ID: 29515862 [TBL] [Abstract][Full Text] [Related]
6. Feature Selection and Comparison of Machine Learning Algorithms in Classification of Grazing and Rumination Behaviour in Sheep. Mansbridge N; Mitsch J; Bollard N; Ellis K; Miguel-Pacheco GG; Dottorini T; Kaler J Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30347653 [TBL] [Abstract][Full Text] [Related]
7. Can accelerometer ear tags identify behavioural changes in sheep associated with parturition? Fogarty ES; Swain DL; Cronin GM; Moraes LE; Trotter M Anim Reprod Sci; 2020 May; 216():106345. PubMed ID: 32414471 [TBL] [Abstract][Full Text] [Related]
8. Reliable recognition of lying, sitting, and standing with a hip-worn accelerometer. Vähä-Ypyä H; Husu P; Suni J; Vasankari T; Sievänen H Scand J Med Sci Sports; 2018 Mar; 28(3):1092-1102. PubMed ID: 29144567 [TBL] [Abstract][Full Text] [Related]
9. Lameness detection via leg-mounted accelerometers on dairy cows on four commercial farms. Thorup VM; Munksgaard L; Robert PE; Erhard HW; Thomsen PT; Friggens NC Animal; 2015 Oct; 9(10):1704-12. PubMed ID: 26040626 [TBL] [Abstract][Full Text] [Related]
10. Automated detection of lameness in sheep using machine learning approaches: novel insights into behavioural differences among lame and non-lame sheep. Kaler J; Mitsch J; Vázquez-Diosdado JA; Bollard N; Dottorini T; Ellis KA R Soc Open Sci; 2020 Jan; 7(1):190824. PubMed ID: 32218931 [TBL] [Abstract][Full Text] [Related]
11. High Precision Classification of Resting and Eating Behaviors of Cattle by Using a Collar-Fitted Triaxial Accelerometer Sensor. Nogoy KMC; Chon SI; Park JH; Sivamani S; Lee DH; Choi SH Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015721 [TBL] [Abstract][Full Text] [Related]
13. Predicting Lameness in Sheep Activity Using Tri-Axial Acceleration Signals. Barwick J; Lamb D; Dobos R; Schneider D; Welch M; Trotter M Animals (Basel); 2018 Jan; 8(1):. PubMed ID: 29324700 [TBL] [Abstract][Full Text] [Related]
14. The Use of Triaxial Accelerometers and Machine Learning Algorithms for Behavioural Identification in Domestic Cats ( Smit M; Ikurior SJ; Corner-Thomas RA; Andrews CJ; Draganova I; Thomas DG Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631701 [TBL] [Abstract][Full Text] [Related]
15. Correlation of subclinical gastrointestinal nematode parasitism with growth and reproductive performance in ewe lambs in Ontario. Borkowski EA; Avula J; Redman EM; Sears W; Lillie BN; Karrow NA; Menzies PI; Gilleard JS; Peregrine AS Prev Vet Med; 2020 Dec; 185():105175. PubMed ID: 33099151 [TBL] [Abstract][Full Text] [Related]
16. Nematode parasitism affects lying time and overall activity patterns in lambs following pasture exposure around weaning. Högberg N; Hessle A; Lidfors L; Enweji N; Höglund J Vet Parasitol; 2021 Aug; 296():109500. PubMed ID: 34139614 [TBL] [Abstract][Full Text] [Related]
17. Posture and movement classification: the comparison of tri-axial accelerometer numbers and anatomical placement. Fortune E; Lugade VA; Kaufman KR J Biomech Eng; 2014 May; 136(5):051003. PubMed ID: 24337255 [TBL] [Abstract][Full Text] [Related]
18. Training and Validating a Machine Learning Model for the Sensor-Based Monitoring of Lying Behavior in Dairy Cows on Pasture and in the Barn. Schmeling L; Elmamooz G; Hoang PT; Kozar A; Nicklas D; Sünkel M; Thurner S; Rauch E Animals (Basel); 2021 Sep; 11(9):. PubMed ID: 34573627 [TBL] [Abstract][Full Text] [Related]
19. Evaluation and application potential of an accelerometer-based collar device for measuring grazing behavior of dairy cows. Werner J; Umstatter C; Leso L; Kennedy E; Geoghegan A; Shalloo L; Schick M; O'Brien B Animal; 2019 Sep; 13(9):2070-2079. PubMed ID: 30739632 [TBL] [Abstract][Full Text] [Related]
20. Feature selection for elderly faller classification based on wearable sensors. Howcroft J; Kofman J; Lemaire ED J Neuroeng Rehabil; 2017 May; 14(1):47. PubMed ID: 28558724 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]