These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 34696028)
21. Long spelling periods are required for pasture to become free of contamination by infective larvae of Haemonchus contortus in a humid subtropical climate of São Paulo state, Brazil. Almeida FA; Albuquerque ACA; Bassetto CC; Starling RZC; Lins JGG; Amarante AFT Vet Parasitol; 2020 Mar; 279():109060. PubMed ID: 32143013 [TBL] [Abstract][Full Text] [Related]
22. Classification of sex-dependent specific behaviours by tri-axial acceleration in the tegu lizard Salvator merianae. Guadalupe-Silva A; Zena LA; Hervas LS; Rios VP; Gargaglioni LH; Buck CL; Bícego KC Comp Biochem Physiol A Mol Integr Physiol; 2024 Dec; 298():111744. PubMed ID: 39293558 [TBL] [Abstract][Full Text] [Related]
23. Investigating the validity of a single tri-axial accelerometer mounted on the head for monitoring the activities of daily living and the timed-up and go test. Abdollah V; Dief TN; Ralston J; Ho C; Rouhani H Gait Posture; 2021 Oct; 90():137-140. PubMed ID: 34481263 [TBL] [Abstract][Full Text] [Related]
24. Analysis of Accelerometer and GPS Data for Cattle Behaviour Identification and Anomalous Events Detection. Cabezas J; Yubero R; Visitación B; Navarro-García J; Algar MJ; Cano EL; Ortega F Entropy (Basel); 2022 Feb; 24(3):. PubMed ID: 35327847 [TBL] [Abstract][Full Text] [Related]
25. Accelerometer activity tracking in horses and the effect of pasture management on time budget. Maisonpierre IN; Sutton MA; Harris P; Menzies-Gow N; Weller R; Pfau T Equine Vet J; 2019 Nov; 51(6):840-845. PubMed ID: 31009100 [TBL] [Abstract][Full Text] [Related]
26. Behavior Classification and Analysis of Grazing Sheep on Pasture with Different Sward Surface Heights Using Machine Learning. Jin Z; Guo L; Shu H; Qi J; Li Y; Xu B; Zhang W; Wang K; Wang W Animals (Basel); 2022 Jul; 12(14):. PubMed ID: 35883291 [TBL] [Abstract][Full Text] [Related]
27. Activity classification using a single chest mounted tri-axial accelerometer. Godfrey A; Bourke AK; Olaighin GM; van de Ven P; Nelson J Med Eng Phys; 2011 Nov; 33(9):1127-35. PubMed ID: 21636308 [TBL] [Abstract][Full Text] [Related]
28. Machine Learning Methods and Visual Observations to Categorize Behavior of Grazing Cattle Using Accelerometer Signals. Parsons IL; Karisch BB; Stone AE; Webb SL; Norman DA; Street GM Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38794023 [TBL] [Abstract][Full Text] [Related]
29. Machine learning for activity recognition: hip versus wrist data. Trost SG; Zheng Y; Wong WK Physiol Meas; 2014 Nov; 35(11):2183-9. PubMed ID: 25340887 [TBL] [Abstract][Full Text] [Related]
30. Long-term gait pattern assessment using a tri-axial accelerometer. De Cillis F; De Simio F; Setola R J Med Eng Technol; 2017 Jul; 41(5):346-361. PubMed ID: 28573938 [TBL] [Abstract][Full Text] [Related]
31. Validation of an ear tag-based accelerometer system for detecting grazing behavior of dairy cows. Pereira GM; Heins BJ; O'Brien B; McDonagh A; Lidauer L; Kickinger F J Dairy Sci; 2020 Apr; 103(4):3529-3544. PubMed ID: 32089298 [TBL] [Abstract][Full Text] [Related]
32. Field evaluation of a random forest activity classifier for wrist-worn accelerometer data. Pavey TG; Gilson ND; Gomersall SR; Clark B; Trost SG J Sci Med Sport; 2017 Jan; 20(1):75-80. PubMed ID: 27372275 [TBL] [Abstract][Full Text] [Related]
33. Validity of using tri-axial accelerometers to measure human movement - Part I: Posture and movement detection. Lugade V; Fortune E; Morrow M; Kaufman K Med Eng Phys; 2014 Feb; 36(2):169-76. PubMed ID: 23899533 [TBL] [Abstract][Full Text] [Related]
34. Evaluation of a digitally integrated accelerometer-based activity monitor for the measurement of activity in cats. Lascelles BD; Hansen BD; Thomson A; Pierce CC; Boland E; Smith ES Vet Anaesth Analg; 2008 Mar; 35(2):173-83. PubMed ID: 17927675 [TBL] [Abstract][Full Text] [Related]
35. The new design of cows' behavior classifier based on acceleration data and proposed feature set. Phi Khanh PC; Tran DT; Duong VT; Thinh NH; Tran DN Math Biosci Eng; 2020 Mar; 17(4):2760-2780. PubMed ID: 32987494 [TBL] [Abstract][Full Text] [Related]
36. Validation of an accelerometer for measurement of activity in frail older people. Chigateri NG; Kerse N; Wheeler L; MacDonald B; Klenk J Gait Posture; 2018 Oct; 66():114-117. PubMed ID: 30172217 [TBL] [Abstract][Full Text] [Related]
37. Real-Time Monitoring of Grazing Cattle Using LORA-WAN Sensors to Improve Precision in Detecting Animal Welfare Implications via Daily Distance Walked Metrics. Nyamuryekung'e S; Duff G; Utsumi S; Estell R; McIntosh MM; Funk M; Cox A; Cao H; Spiegal S; Perea A; Cibils AF Animals (Basel); 2023 Aug; 13(16):. PubMed ID: 37627433 [TBL] [Abstract][Full Text] [Related]
38. Faller Classification in Older Adults Using Wearable Sensors Based on Turn and Straight-Walking Accelerometer-Based Features. Drover D; Howcroft J; Kofman J; Lemaire ED Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28590432 [TBL] [Abstract][Full Text] [Related]
39. Identification of children's activity type with accelerometer-based neural networks. de Vries SI; Engels M; Garre FG Med Sci Sports Exerc; 2011 Oct; 43(10):1994-9. PubMed ID: 21448085 [TBL] [Abstract][Full Text] [Related]
40. Accelerometer-Based Human Activity Recognition for Patient Monitoring Using a Deep Neural Network. Fridriksdottir E; Bonomi AG Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33182813 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]