These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Novel flexible Dry multipin electrodes for EEG: Signal quality and interfacial impedance of Ti and TiN coatings. Fiedler P; Fonseca C; Pedrosa P; Martins A; Vaz F; Griebel S; Haueisen J Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():547-50. PubMed ID: 24109745 [TBL] [Abstract][Full Text] [Related]
7. Systematic comparison between a wireless EEG system with dry electrodes and a wired EEG system with wet electrodes. Kam JWY; Griffin S; Shen A; Patel S; Hinrichs H; Heinze HJ; Deouell LY; Knight RT Neuroimage; 2019 Jan; 184():119-129. PubMed ID: 30218769 [TBL] [Abstract][Full Text] [Related]
8. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses. Baek HJ; Kim HS; Heo J; Lim YG; Park KS J Neural Eng; 2013 Apr; 10(2):024001. PubMed ID: 23448913 [TBL] [Abstract][Full Text] [Related]
9. Flower electrodes for comfortable dry electroencephalography. Warsito IF; Komosar M; Bernhard MA; Fiedler P; Haueisen J Sci Rep; 2023 Oct; 13(1):16589. PubMed ID: 37789022 [TBL] [Abstract][Full Text] [Related]
10. Validation of a wireless dry electrode system for electroencephalography. Wyckoff SN; Sherlin LH; Ford NL; Dalke D J Neuroeng Rehabil; 2015 Oct; 12():95. PubMed ID: 26520574 [TBL] [Abstract][Full Text] [Related]
11. High and dry? Comparing active dry EEG electrodes to active and passive wet electrodes. Mathewson KE; Harrison TJ; Kizuk SA Psychophysiology; 2017 Jan; 54(1):74-82. PubMed ID: 28000254 [TBL] [Abstract][Full Text] [Related]
12. Comparison between a wireless dry electrode EEG system with a conventional wired wet electrode EEG system for clinical applications. Hinrichs H; Scholz M; Baum AK; Kam JWY; Knight RT; Heinze HJ Sci Rep; 2020 Mar; 10(1):5218. PubMed ID: 32251333 [TBL] [Abstract][Full Text] [Related]
13. Towards out-of-the-lab EEG in uncontrolled environments: Feasibility study of dry EEG recordings during exercise bike riding. Kohli S; Casson AJ Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1025-8. PubMed ID: 26736439 [TBL] [Abstract][Full Text] [Related]
14. A Dry EEG-System for Scientific Research and Brain-Computer Interfaces. Zander TO; Lehne M; Ihme K; Jatzev S; Correia J; Kothe C; Picht B; Nijboer F Front Neurosci; 2011; 5():53. PubMed ID: 21647345 [TBL] [Abstract][Full Text] [Related]
15. A high-speed brain-computer interface (BCI) using dry EEG electrodes. Spüler M PLoS One; 2017; 12(2):e0172400. PubMed ID: 28225794 [TBL] [Abstract][Full Text] [Related]
16. Real-Life Dry-Contact Ear-EEG. Kappel SL; Kidmose P Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5470-5474. PubMed ID: 30441575 [TBL] [Abstract][Full Text] [Related]
17. Flexible graphene/GO electrode for gel-free EEG. Ko LW; Su CH; Liao PL; Liang JT; Tseng YH; Chen SH J Neural Eng; 2021 May; 18(4):. PubMed ID: 33831852 [No Abstract] [Full Text] [Related]
18. Physiological artifacts in scalp EEG and ear-EEG. Kappel SL; Looney D; Mandic DP; Kidmose P Biomed Eng Online; 2017 Aug; 16(1):103. PubMed ID: 28800744 [TBL] [Abstract][Full Text] [Related]
19. Novel active comb-shaped dry electrode for EEG measurement in hairy site. Huang YJ; Wu CY; Wong AM; Lin BS IEEE Trans Biomed Eng; 2015 Jan; 62(1):256-63. PubMed ID: 25137719 [TBL] [Abstract][Full Text] [Related]
20. Custom-Fitted In- and Around-the-Ear Sensors for Unobtrusive and On-the-Go EEG Acquisitions: Development and Validation. Valentin O; Viallet G; Delnavaz A; Cretot-Richert G; Ducharme M; Monsarat-Chanon H; Voix J Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922456 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]