These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 34696041)

  • 21. Prospective Fall-Risk Prediction Models for Older Adults Based on Wearable Sensors.
    Howcroft J; Kofman J; Lemaire ED
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1812-1820. PubMed ID: 28358689
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identifying balance impairments in people with Parkinson's disease using video and wearable sensors.
    Stack E; Agarwal V; King R; Burnett M; Tahavori F; Janko B; Harwin W; Ashburn A; Kunkel D
    Gait Posture; 2018 May; 62():321-326. PubMed ID: 29614464
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automatic Quantification of Tandem Walking Using a Wearable Device: New Insights Into Dynamic Balance and Mobility in Older Adults.
    Ganz N; Gazit E; Giladi N; Dawe RJ; Mirelman A; Buchman AS; Hausdorff JM
    J Gerontol A Biol Sci Med Sci; 2021 Jan; 76(1):101-107. PubMed ID: 32931560
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Erratum.
    Mult Scler; 2016 Oct; 22(12):NP9-NP11. PubMed ID: 26041800
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wearable Inertial Sensors for Fall Risk Assessment and Prediction in Older Adults: A Systematic Review and Meta-Analysis.
    Montesinos L; Castaldo R; Pecchia L
    IEEE Trans Neural Syst Rehabil Eng; 2018 Mar; 26(3):573-582. PubMed ID: 29522401
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Validation of IMU-based gait event detection during curved walking and turning in older adults and Parkinson's Disease patients.
    Romijnders R; Warmerdam E; Hansen C; Welzel J; Schmidt G; Maetzler W
    J Neuroeng Rehabil; 2021 Feb; 18(1):28. PubMed ID: 33549105
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contribution of age and balance confidence to functional mobility test performance: diagnostic accuracy of L test and normal-paced timed up and go.
    Medley A; Thompson M
    J Geriatr Phys Ther; 2015; 38(1):8-16. PubMed ID: 24755690
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Do wearable sensors add meaningful information to the Timed Up and Go test? A study on obese women.
    Cimolin V; Cau N; Malchiodi Albedi G; Aspesi V; Merenda V; Galli M; Capodaglio P
    J Electromyogr Kinesiol; 2019 Feb; 44():78-85. PubMed ID: 30551006
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Turning is an important marker of balance confidence and walking limitation in persons with multiple sclerosis.
    Adusumilli G; Lancia S; Levasseur VA; Amblee V; Orchard M; Wagner JM; Naismith RT
    PLoS One; 2018; 13(6):e0198178. PubMed ID: 29879144
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of fall risk among community-dwelling older adults using a wearable system.
    Lockhart TE; Soangra R; Yoon H; Wu T; Frames CW; Weaver R; Roberto KA
    Sci Rep; 2021 Oct; 11(1):20976. PubMed ID: 34697377
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tests of stepping as indicators of mobility, balance, and fall risk in balance-impaired older adults.
    Cho BL; Scarpace D; Alexander NB
    J Am Geriatr Soc; 2004 Jul; 52(7):1168-73. PubMed ID: 15209657
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Probability Distribution Model-Based Approach for Foot Placement Prediction in the Early Swing Phase With a Wearable IMU Sensor.
    Chen X; Zhang K; Liu H; Leng Y; Fu C
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2595-2604. PubMed ID: 34874865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of foot clearance parameters as a precursor to forecasting the risk of tripping and falling.
    Lai DT; Taylor SB; Begg RK
    Hum Mov Sci; 2012 Apr; 31(2):271-83. PubMed ID: 21035220
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Risk of Falling in a Timed Up and Go Test Using an UWB Radar and an Instrumented Insole.
    Ayena JC; Chioukh L; Otis MJ; Deslandes D
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33494509
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization of IMU Sensor Placement for the Measurement of Lower Limb Joint Kinematics.
    Niswander W; Wang W; Kontson K
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33105876
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detecting subtle mobility changes among older adults: the Quantitative Timed Up and Go test.
    Smith E; Cunningham C; Greene BR; McCarthy Persson U; Blake C
    Aging Clin Exp Res; 2021 Aug; 33(8):2157-2164. PubMed ID: 33098079
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thigh-Derived Inertial Sensor Metrics to Assess the Sit-to-Stand and Stand-to-Sit Transitions in the Timed Up and Go (TUG) Task for Quantifying Mobility Impairment in Multiple Sclerosis.
    Witchel HJ; Oberndorfer C; Needham R; Healy A; Westling CEI; Guppy JH; Bush J; Barth J; Herberz C; Roggen D; Eskofier BM; Rashid W; Chockalingam N; Klucken J
    Front Neurol; 2018; 9():684. PubMed ID: 30271371
    [No Abstract]   [Full Text] [Related]  

  • 38. The Toronto older adults gait archive: video and 3D inertial motion capture data of older adults' walking.
    Mehdizadeh S; Nabavi H; Sabo A; Arora T; Iaboni A; Taati B
    Sci Data; 2022 Jul; 9(1):398. PubMed ID: 35817777
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reliability of inertial sensor based spatiotemporal gait parameters for short walking bouts in community dwelling older adults.
    Motti Ader LG; Greene BR; McManus K; Caulfield B
    Gait Posture; 2021 Mar; 85():1-6. PubMed ID: 33497966
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection of Gait Abnormalities for Fall Risk Assessment Using Wrist-Worn Inertial Sensors and Deep Learning.
    Kiprijanovska I; Gjoreski H; Gams M
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32961750
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.