These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34696071)

  • 21. OpenSense: An open-source toolbox for inertial-measurement-unit-based measurement of lower extremity kinematics over long durations.
    Al Borno M; O'Day J; Ibarra V; Dunne J; Seth A; Habib A; Ong C; Hicks J; Uhlrich S; Delp S
    J Neuroeng Rehabil; 2022 Feb; 19(1):22. PubMed ID: 35184727
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Repeatability of measuring knee flexion angles with wearable inertial sensors.
    Fennema MC; Bloomfield RA; Lanting BA; Birmingham TB; Teeter MG
    Knee; 2019 Jan; 26(1):97-105. PubMed ID: 30554906
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Drift-Free 3D Orientation and Displacement Estimation for Quasi-Cyclical Movements Using One Inertial Measurement Unit: Application to Running.
    Zandbergen MA; Reenalda J; van Middelaar RP; Ferla RI; Buurke JH; Veltink PH
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161701
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimation of IMU and MARG orientation using a gradient descent algorithm.
    Madgwick SO; Harrison AJ; Vaidyanathan A
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975346. PubMed ID: 22275550
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving low-cost inertial-measurement-unit (IMU)-based motion tracking accuracy for a biomorphic hyper-redundant snake robot.
    Yang W; Bajenov A; Shen Y
    Robotics Biomim; 2017; 4(1):16. PubMed ID: 29170730
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A sensor fusion method for tracking vertical velocity and height based on inertial and barometric altimeter measurements.
    Sabatini AM; Genovese V
    Sensors (Basel); 2014 Jul; 14(8):13324-47. PubMed ID: 25061835
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimating Lower Limb Kinematics Using a Lie Group Constrained Extended Kalman Filter with a Reduced Wearable IMU Count and Distance Measurements.
    Sy LWF; Lovell NH; Redmond SJ
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33260386
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimization of IMU Sensor Placement for the Measurement of Lower Limb Joint Kinematics.
    Niswander W; Wang W; Kontson K
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33105876
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wearable Monitoring of Joint Angle and Muscle Activity.
    Cotton RJ; Rogers J
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():258-263. PubMed ID: 31374639
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The static accuracy and calibration of inertial measurement units for 3D orientation.
    Brodie MA; Walmsley A; Page W
    Comput Methods Biomech Biomed Engin; 2008 Dec; 11(6):641-8. PubMed ID: 18688763
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A New Quaternion-Based Kalman Filter for Human Body Motion Tracking Using the Second Estimator of the Optimal Quaternion Algorithm and the Joint Angle Constraint Method with Inertial and Magnetic Sensors.
    Duan Y; Zhang X; Li Z
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33113983
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visual-inertial hand motion tracking with robustness against occlusion, interference, and contact.
    Lee Y; Do W; Yoon H; Heo J; Lee W; Lee D
    Sci Robot; 2021 Sep; 6(58):eabe1315. PubMed ID: 34586835
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Validation of an IMU Suit for Military-Based Tasks.
    Mavor MP; Ross GB; Clouthier AL; Karakolis T; Graham RB
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751920
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Validity, reliability and accuracy of inertial measurement units (IMUs) to measure angles: application in swimming.
    Guignard B; Ayad O; Baillet H; Mell F; Simbaña Escobar D; Boulanger J; Seifert L
    Sports Biomech; 2024 Oct; 23(10):1471-1503. PubMed ID: 34320904
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Validation of Thigh Angle Estimation Using Inertial Measurement Unit Data against Optical Motion Capture Systems.
    Abhayasinghe N; Murray I; Sharif Bidabadi S
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30708957
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Validity of inertial sensor based 3D joint kinematics of static and dynamic sport and physiotherapy specific movements.
    Teufl W; Miezal M; Taetz B; Fröhlich M; Bleser G
    PLoS One; 2019; 14(2):e0213064. PubMed ID: 30817787
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Data fusion algorithms for multiple inertial measurement units.
    Bancroft JB; Lachapelle G
    Sensors (Basel); 2011; 11(7):6771-98. PubMed ID: 22163985
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Validation of a low-cost inertial motion capture system for whole-body motion analysis.
    Robert-Lachaine X; Mecheri H; Muller A; Larue C; Plamondon A
    J Biomech; 2020 Jan; 99():109520. PubMed ID: 31787261
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measuring upper arm elevation using an inertial measurement unit: An exploration of sensor fusion algorithms and gyroscope models.
    Chen H; Schall MC; Fethke NB
    Appl Ergon; 2020 Nov; 89():103187. PubMed ID: 32854821
    [TBL] [Abstract][Full Text] [Related]  

  • 40. IMU-to-Segment Assignment and Orientation Alignment for the Lower Body Using Deep Learning.
    Zimmermann T; Taetz B; Bleser G
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29351262
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.