These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 34696104)

  • 1. A Flow Sensor-Based Suction-Index Control Strategy for Rotary Left Ventricular Assist Devices.
    Liang L; Qin K; El-Baz AS; Roussel TJ; Sethu P; Giridharan GA; Wang Y
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Sensorless Rotational Speed-Based Control System for Continuous Flow Left Ventricular Assist Devices.
    Meki M; Wang Y; Sethu P; Ghazal M; El-Baz A; Giridharan G
    IEEE Trans Biomed Eng; 2020 Apr; 67(4):1050-1060. PubMed ID: 31329102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rotary blood pump control strategy for preventing left ventricular suction.
    Wang Y; Koenig SC; Slaughter MS; Giridharan GA
    ASAIO J; 2015; 61(1):21-30. PubMed ID: 25248043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suction prevention and physiologic control of continuous flow left ventricular assist devices using intrinsic pump parameters.
    Wang Y; Koenig SC; Slaughter MS; Giridharan GA
    ASAIO J; 2015; 61(2):170-7. PubMed ID: 25396276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensor-Based Physiologic Control Strategy for Biventricular Support with Rotary Blood Pumps.
    Wang Y; Koenig SC; Wu Z; Slaughter MS; Giridharan GA
    ASAIO J; 2018; 64(3):338-350. PubMed ID: 28938308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Study on sensorless suction detection method based on the intrinsic parameter of rotary left ventricular assist devices].
    Peng J; Wang Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Jun; 36(3):478-485. PubMed ID: 31232552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vivo Evaluation of Active and Passive Physiological Control Systems for Rotary Left and Right Ventricular Assist Devices.
    Gregory SD; Stevens MC; Pauls JP; Schummy E; Diab S; Thomson B; Anderson B; Tansley G; Salamonsen R; Fraser JF; Timms D
    Artif Organs; 2016 Sep; 40(9):894-903. PubMed ID: 26748566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological control of dual rotary pumps as a biventricular assist device using a master/slave approach.
    Stevens MC; Wilson S; Bradley A; Fraser J; Timms D
    Artif Organs; 2014 Sep; 38(9):766-74. PubMed ID: 24749848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rotary pump speed modulation for generating pulsatile flow and phasic left ventricular volume unloading in a bovine model of chronic ischemic heart failure.
    Soucy KG; Giridharan GA; Choi Y; Sobieski MA; Monreal G; Cheng A; Schumer E; Slaughter MS; Koenig SC
    J Heart Lung Transplant; 2015 Jan; 34(1):122-131. PubMed ID: 25447573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Physiological Control Systems for Rotary Left Ventricular Assist Devices: An In-Vitro Study.
    Pauls JP; Stevens MC; Bartnikowski N; Fraser JF; Gregory SD; Tansley G
    Ann Biomed Eng; 2016 Aug; 44(8):2377-2387. PubMed ID: 26833037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anatomy and Physiology of Left Ventricular Suction Induced by Rotary Blood Pumps.
    Salamonsen RF; Lim E; Moloney J; Lovell NH; Rosenfeldt FL
    Artif Organs; 2015 Aug; 39(8):681-90. PubMed ID: 26146861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Research on Control of the Cardiovascular System Based on a Left Ventricular Assist Device].
    Wang F; Xu Q; Wu Z; Wen T; Ji J; He Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Dec; 33(6):1075-83. PubMed ID: 29714970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suction due to left ventricular assist: implications for device control and management.
    Reesink K; Dekker A; Van der Nagel T; Beghi C; Leonardi F; Botti P; De Cicco G; Lorusso R; Van der Veen F; Maessen J
    Artif Organs; 2007 Jul; 31(7):542-9. PubMed ID: 17584479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of ventricular suction in an implantable rotary blood pump using support vector machines.
    Wang Y; Faragallah G; Divo E; Simaan MA
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3318-21. PubMed ID: 22255049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A control system for rotary blood pumps based on suction detection.
    Ferreira A; Boston JR; Antaki JF
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):656-65. PubMed ID: 19272919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiologic control of rotary blood pumps: an in vitro study.
    Giridharan GA; Pantalos GM; Gillars KJ; Koenig SC; Skliar M
    ASAIO J; 2004; 50(5):403-9. PubMed ID: 15497377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Multi-objective Physiological Control System for Rotary Left Ventricular Assist Devices.
    Petrou A; Monn M; Meboldt M; Schmid Daners M
    Ann Biomed Eng; 2017 Dec; 45(12):2899-2910. PubMed ID: 28900761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulmonary Valve Opening With Two Rotary Left Ventricular Assist Devices for Biventricular Support.
    Wu EL; Nestler F; Kleinheyer M; Stevens MC; Pauls JP; Fraser JF; Gregory SD
    Artif Organs; 2018 Jan; 42(1):31-40. PubMed ID: 28741841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A sensorless, physiologic feedback control strategy to increase vascular pulsatility for rotary blood pumps.
    Tan Z; Huo M; Qin K; El-Baz AS; Sethu P; Wang Y; Giridharan GA
    Biomed Signal Process Control; 2023 May; 83():. PubMed ID: 36936779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of continuous flow ventricular assist devices in patients with heart failure and a normal ejection fraction: a computer-simulation study.
    Moscato F; Wirrmann C; Granegger M; Eskandary F; Zimpfer D; Schima H
    J Thorac Cardiovasc Surg; 2013 May; 145(5):1352-8. PubMed ID: 22841169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.