These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34696107)

  • 1. Optimizing Sensor Position with Virtual Sensors in Human Activity Recognition System Design.
    Xia C; Sugiura Y
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective Ensemble Based on Extreme Learning Machine for Sensor-Based Human Activity Recognition.
    Tian Y; Zhang J; Chen L; Geng Y; Wang X
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31398938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Segment-Based Unsupervised Learning Method in Sensor-Based Human Activity Recognition.
    Takenaka K; Kondo K; Hasegawa T
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HIT HAR: Human Image Threshing Machine for Human Activity Recognition Using Deep Learning Models.
    Poulose A; Kim JH; Han DS
    Comput Intell Neurosci; 2022; 2022():1808990. PubMed ID: 36248917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Personalized Human Activity Recognition Based on Integrated Wearable Sensor and Transfer Learning.
    Fu Z; He X; Wang E; Huo J; Huang J; Wu D
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33525538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LSTM Networks Using Smartphone Data for Sensor-Based Human Activity Recognition in Smart Homes.
    Mekruksavanich S; Jitpattanakul A
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33652697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing Sensor Deployment for Multi-Sensor-Based HAR System with Improved Glowworm Swarm Optimization Algorithm.
    Tian Y; Zhang J
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33327557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Method for Sensor-Based Activity Recognition in Missing Data Scenario.
    Hossain T; Ahad MAR; Inoue S
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32650486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploration of Human Activity Recognition Using a Single Sensor for Stroke Survivors and Able-Bodied People.
    Meng L; Zhang A; Chen C; Wang X; Jiang X; Tao L; Fan J; Wu X; Dai C; Zhang Y; Vanrumste B; Tamura T; Chen W
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33530295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Device-Free Human Activity Recognition with Low-Resolution Infrared Array Sensor Using Long Short-Term Memory Neural Network.
    Yin C; Chen J; Miao X; Jiang H; Chen D
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34065183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. w-HAR: An Activity Recognition Dataset and Framework Using Low-Power Wearable Devices.
    Bhat G; Tran N; Shill H; Ogras UY
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Robust Deep Learning Approach for Position-Independent Smartphone-Based Human Activity Recognition.
    Almaslukh B; Artoli AM; Al-Muhtadi J
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30388855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of machine learning techniques for the identification of human activities from inertial sensors available in a mobile device after the application of data imputation techniques.
    Pires IM; Hussain F; Marques G; Garcia NM
    Comput Biol Med; 2021 Aug; 135():104638. PubMed ID: 34256257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HARTH: A Human Activity Recognition Dataset for Machine Learning.
    Logacjov A; Bach K; Kongsvold A; BĂ„rdstu HB; Mork PJ
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensor-Based Human Activity Recognition with Spatio-Temporal Deep Learning.
    Nafea O; Abdul W; Muhammad G; Alsulaiman M
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33803891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating the Impact of a Two-Stage Multivariate Data Cleansing Approach to Improve to the Performance of Machine Learning Classifiers: A Case Study in Human Activity Recognition.
    Neira-Rodado D; Nugent C; Cleland I; Velasquez J; Viloria A
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32230844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Activity-Aware Sampling Scheme for Mobile Phones in Activity Recognition.
    Chen Z; Chen J; Huang X
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32294935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Group Decision Making-Based Fusion for Human Activity Recognition in Body Sensor Networks.
    Tian Y; Zhang J; Chen Q; Hou S; Xiao L
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary Design of Convolutional Neural Networks for Human Activity Recognition in Sensor-Rich Environments.
    Baldominos A; Saez Y; Isasi P
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29690587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human Activity Recognition: A Dynamic Inductive Bias Selection Perspective.
    Hamidi M; Osmani A
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.