These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 34696126)
1. Novel Prediction of Diagnosis Effectiveness for Adaptation of the Spectral Kurtosis Technology to Varying Operating Conditions. Kolbe S; Gelman L; Ball A Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696126 [TBL] [Abstract][Full Text] [Related]
2. Time-Varying Spectral Kurtosis: Generalization of Spectral Kurtosis for Local Damage Detection in Rotating Machines under Time-Varying Operating Conditions. Wodecki J Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34064204 [TBL] [Abstract][Full Text] [Related]
3. Decision Tree-Based Classification for Planetary Gearboxes' Condition Monitoring with the Use of Vibration Data in Multidimensional Symptom Space. Lipinski P; Brzychczy E; Zimroz R Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33105712 [TBL] [Abstract][Full Text] [Related]
4. A Reliable Fault Diagnosis Method for a Gearbox System with Varying Rotational Speeds. Nguyen CD; Prosvirin A; Kim JM Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32486356 [TBL] [Abstract][Full Text] [Related]
5. Prognosis of a Wind Turbine Gearbox Bearing Using Supervised Machine Learning. Elasha F; Shanbr S; Li X; Mba D Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31336974 [TBL] [Abstract][Full Text] [Related]
6. Vibration Fatigue Damage Estimation by New Stress Correction Based on Kurtosis Control of Random Excitation Loadings. Wang Y; Serra R Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34282790 [TBL] [Abstract][Full Text] [Related]
7. Generative Adversarial Learning Enhanced Fault Diagnosis for Planetary Gearbox under Varying Working Conditions. Wen W; Bai Y; Cheng W Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32197349 [TBL] [Abstract][Full Text] [Related]
8. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477 [TBL] [Abstract][Full Text] [Related]
9. Early Fault Diagnosis of Bearings Using an Improved Spectral Kurtosis by Maximum Correlated Kurtosis Deconvolution. Jia F; Lei Y; Shan H; Lin J Sensors (Basel); 2015 Nov; 15(11):29363-77. PubMed ID: 26610501 [TBL] [Abstract][Full Text] [Related]
10. Generative Transfer Learning for Intelligent Fault Diagnosis of the Wind Turbine Gearbox. Guo J; Wu J; Zhang S; Long J; Chen W; Cabrera D; Li C Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32131393 [TBL] [Abstract][Full Text] [Related]
11. Gearbox tooth cut fault diagnostics using acoustic emission and vibration sensors--a comparative study. Qu Y; He D; Yoon J; Van Hecke B; Bechhoefer E; Zhu J Sensors (Basel); 2014 Jan; 14(1):1372-93. PubMed ID: 24424467 [TBL] [Abstract][Full Text] [Related]
12. A Simple Condition Monitoring Method for Gearboxes Operating in Impulsive Environments. Schmidt S; Zimroz R; Chaari F; Heyns PS; Haddar M Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32283650 [TBL] [Abstract][Full Text] [Related]
13. Multi-Stage Feature Selection by Using Genetic Algorithms for Fault Diagnosis in Gearboxes Based on Vibration Signal. Cerrada M; Vinicio Sánchez R; Cabrera D; Zurita G; Li C Sensors (Basel); 2015 Sep; 15(9):23903-26. PubMed ID: 26393603 [TBL] [Abstract][Full Text] [Related]
14. Fetal health status prediction based on maternal clinical history using machine learning techniques. Akbulut A; Ertugrul E; Topcu V Comput Methods Programs Biomed; 2018 Sep; 163():87-100. PubMed ID: 30119860 [TBL] [Abstract][Full Text] [Related]
15. Feature Mining and Health Assessment for Gearboxes Using Run-Up/Coast-Down Signals. Zhao M; Lin J; Miao Y; Xu X Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27827831 [TBL] [Abstract][Full Text] [Related]
16. Novel Higher-Order Spectral Cross-Correlation Technologies for Vibration Sensor-Based Diagnosis of Gearboxes. Gelman L; Soliński K; Ball A Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32916831 [TBL] [Abstract][Full Text] [Related]
17. Prediction of Heart Disease Using a Combination of Machine Learning and Deep Learning. Bharti R; Khamparia A; Shabaz M; Dhiman G; Pande S; Singh P Comput Intell Neurosci; 2021; 2021():8387680. PubMed ID: 34306056 [TBL] [Abstract][Full Text] [Related]
18. A Machine Learning Approach for Gearbox System Fault Diagnosis. Vrba J; Cejnek M; Steinbach J; Krbcova Z Entropy (Basel); 2021 Aug; 23(9):. PubMed ID: 34573755 [TBL] [Abstract][Full Text] [Related]
19. Machine Learning Models for the Hearing Impairment Prediction in Workers Exposed to Complex Industrial Noise: A Pilot Study. Zhao Y; Li J; Zhang M; Lu Y; Xie H; Tian Y; Qiu W Ear Hear; 2019; 40(3):690-699. PubMed ID: 30142102 [TBL] [Abstract][Full Text] [Related]
20. A review on utilizing machine learning technology in the fields of electronic emergency triage and patient priority systems in telemedicine: Coherent taxonomy, motivations, open research challenges and recommendations for intelligent future work. Salman OH; Taha Z; Alsabah MQ; Hussein YS; Mohammed AS; Aal-Nouman M Comput Methods Programs Biomed; 2021 Sep; 209():106357. PubMed ID: 34438223 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]