These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34696130)

  • 1. The Experimental Verification of Direct-Write Silver Conductive Grid and ARIMA Time Series Analysis for Crack Propagation.
    Kurnyta A; Baran M; Kurnyta-Mazurek P; Kowalczyk K; Dziendzikowski M; Dragan K
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance Evaluation of a Carbon Nanotube Sensor for Fatigue Crack Monitoring of Metal Structures.
    Ahmed S; Schumacher T; Thostenson ET; McConnell J
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32781517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Health Monitoring of Fatigue Cracks for Steel Bridges with Wireless Large-Area Strain Sensors.
    Taher SA; Li J; Jeong JH; Laflamme S; Jo H; Bennett C; Collins WN; Downey ARJ
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crack Detecting Method Based on Grid-Type Sensing Networks Using Electrical Signals.
    Ahn JH; Lee YC; Jeong SM; Kim HN; Lee CY
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37447942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active Monitoring of Fatigue Crack in the Weld Zone of Bogie Frames Using Ultrasonic Guided Waves.
    Yan J; Jin H; Sun H; Qing X
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31370343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micropatterning of Metal-Grid Micro Electro Mechanical Systems (MEMS) Sensor for Crack Detection Using Electrohydrodynamic Printing System.
    Lee YC; Leeghim H; Lee CY
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4385-4389. PubMed ID: 31968480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep neural network-based structural health monitoring technique for real-time crack detection and localization using strain gauge sensors.
    Yoon J; Lee J; Kim G; Ryu S; Park J
    Sci Rep; 2022 Nov; 12(1):20204. PubMed ID: 36418390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crack-Length Estimation for Structural Health Monitoring Using the High-Frequency Resonances Excited by the Energy Release during Fatigue-Crack Growth.
    Joseph R; Mei H; Migot A; Giurgiutiu V
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34203019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatigue Crack Propagation Estimation Based on Direct Strain Measurement during a Full-Scale Fatigue Test.
    Reymer P; Leski A; Dziendzikowski M
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A conductive grating sensor for online quantitative monitoring of fatigue crack.
    Li P; Cheng L; Yan X; Jiao S; Li Y
    Rev Sci Instrum; 2018 May; 89(5):055001. PubMed ID: 29864806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crack-Based Sensor by Using the UV Curable Polyurethane-Acrylate Coated Film with V-Groove Arrays.
    Park J; Kim DS; Yoon Y; Shanmugasundaram A; Lee DW
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasensitive Cracking-Assisted Strain Sensors Based on Silver Nanowires/Graphene Hybrid Particles.
    Chen S; Wei Y; Wei S; Lin Y; Liu L
    ACS Appl Mater Interfaces; 2016 Sep; 8(38):25563-70. PubMed ID: 27599264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of steel fatigue cracks with strain sensing sheets based on large area electronics.
    Yao Y; Glisic B
    Sensors (Basel); 2015 Apr; 15(4):8088-108. PubMed ID: 25853407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel Electromagnetic Sensors Embedded in Reinforced Concrete Beams for Crack Detection.
    Gkantou M; Muradov M; Kamaris GS; Hashim K; Atherton W; Kot P
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31779178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel ultrasonic non-destructive testing methodology to monitor fatigue crack growth in compact tension specimens.
    Abraham ST; Babu MN; Venkatraman B
    Rev Sci Instrum; 2023 Mar; 94(3):035108. PubMed ID: 37012745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Monitoring of Crack Propagation in Repaired Structures Based on Characteristics of FBG Sensors Reflecting Spectra].
    Yuan SF; Jin X; Qiu L; Huang HM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Mar; 35(3):724-9. PubMed ID: 26117887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micro-Crack Induced Buckypaper/PI Tape Hybrid Sensors with Enhanced and Tunable Piezo-Resistive Properties.
    Danish M; Luo S
    Sci Rep; 2019 Nov; 9(1):16920. PubMed ID: 31729448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Plastic Crack-Tip Opening Displacement Tool Based on Digital Image Correlation for Estimating the Fatigue-Crack-Growth Law on 316L Stainless Steel.
    Ajmal M; Lopez-Crespo C; Cruces AS; Lopez-Crespo P
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple Cracks Detection in Pipeline Using Damage Index Matrix Based on Piezoceramic Transducer-Enabled Stress Wave Propagation.
    Du G; Kong Q; Zhou H; Gu H
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28805666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.