These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 34696460)
41. RNAi suppressor: The hidden weapon of SARS-CoV. Karjee S; Mukherjee SK J Biosci; 2020; 45(1):. PubMed ID: 32713862 [TBL] [Abstract][Full Text] [Related]
42. A Simplified Quantitative Real-Time PCR Assay for Monitoring SARS-CoV-2 Growth in Cell Culture. Shema Mugisha C; Vuong HR; Puray-Chavez M; Bailey AL; Fox JM; Chen RE; Wessel AW; Scott JM; Harastani HH; Boon ACM; Shin H; Kutluay SB mSphere; 2020 Sep; 5(5):. PubMed ID: 32878932 [TBL] [Abstract][Full Text] [Related]
43. RNA interference targeting virion core protein ORF095 inhibits Goatpox virus replication in Vero cells. Zhao Z; Wu G; Zhu X; Yan X; Dou Y; Li J; Zhu H; Zhang Q; Cai X Virol J; 2012 Feb; 9():48. PubMed ID: 22340205 [TBL] [Abstract][Full Text] [Related]
44. SARS-CoV-2 replicon for high-throughput antiviral screening. Zhang QY; Deng CL; Liu J; Li JQ; Zhang HQ; Li N; Zhang YN; Li XD; Zhang B; Xu Y; Ye HQ J Gen Virol; 2021 May; 102(5):. PubMed ID: 33956592 [TBL] [Abstract][Full Text] [Related]
45. Inhibition of monkeypox virus replication by RNA interference. Alkhalil A; Strand S; Mucker E; Huggins JW; Jahrling PB; Ibrahim SM Virol J; 2009 Nov; 6():188. PubMed ID: 19889227 [TBL] [Abstract][Full Text] [Related]
46. Restriction of SARS-CoV-2 replication by targeting programmed -1 ribosomal frameshifting. Sun Y; Abriola L; Niederer RO; Pedersen SF; Alfajaro MM; Silva Monteiro V; Wilen CB; Ho YC; Gilbert WV; Surovtseva YV; Lindenbach BD; Guo JU Proc Natl Acad Sci U S A; 2021 Jun; 118(26):. PubMed ID: 34185680 [TBL] [Abstract][Full Text] [Related]
47. Rapid in vitro assays for screening neutralizing antibodies and antivirals against SARS-CoV-2. Park JG; Oladunni FS; Chiem K; Ye C; Pipenbrink M; Moran T; Walter MR; Kobie J; Martinez-Sobrido L J Virol Methods; 2021 Jan; 287():113995. PubMed ID: 33068703 [TBL] [Abstract][Full Text] [Related]
48. Small interfering RNA targeted to hepatitis C virus 5' nontranslated region exerts potent antiviral effect. Kanda T; Steele R; Ray R; Ray RB J Virol; 2007 Jan; 81(2):669-76. PubMed ID: 17079316 [TBL] [Abstract][Full Text] [Related]
49. Prophylactic and therapeutic effects of small interfering RNA targeting SARS-coronavirus. Zheng BJ; Guan Y; Tang Q; Du C; Xie FY; He ML; Chan KW; Wong KL; Lader E; Woodle MC; Lu PY; Li B; Zhong N Antivir Ther; 2004 Jun; 9(3):365-74. PubMed ID: 15259899 [TBL] [Abstract][Full Text] [Related]
50. Novel and potent inhibitors targeting DHODH are broad-spectrum antivirals against RNA viruses including newly-emerged coronavirus SARS-CoV-2. Xiong R; Zhang L; Li S; Sun Y; Ding M; Wang Y; Zhao Y; Wu Y; Shang W; Jiang X; Shan J; Shen Z; Tong Y; Xu L; Chen Y; Liu Y; Zou G; Lavillete D; Zhao Z; Wang R; Zhu L; Xiao G; Lan K; Li H; Xu K Protein Cell; 2020 Oct; 11(10):723-739. PubMed ID: 32754890 [TBL] [Abstract][Full Text] [Related]
51. Host-virus interaction: the antiviral defense function of small interfering RNAs can be enhanced by host microRNA-7 in vitro. Zhang X; Liu D; Zhang S; Wei X; Song J; Zhang Y; Jin M; Shen Z; Wang X; Feng Z; Li J Sci Rep; 2015 Jun; 5():9722. PubMed ID: 26067353 [TBL] [Abstract][Full Text] [Related]
52. Reverse-transcribed SARS-CoV-2 RNA can integrate into the genome of cultured human cells and can be expressed in patient-derived tissues. Zhang L; Richards A; Barrasa MI; Hughes SH; Young RA; Jaenisch R Proc Natl Acad Sci U S A; 2021 May; 118(21):. PubMed ID: 33958444 [TBL] [Abstract][Full Text] [Related]
53. Targeting the Conserved Stem Loop 2 Motif in the SARS-CoV-2 Genome. Lulla V; Wandel MP; Bandyra KJ; Ulferts R; Wu M; Dendooven T; Yang X; Doyle N; Oerum S; Beale R; O'Rourke SM; Randow F; Maier HJ; Scott W; Ding Y; Firth AE; Bloznelyte K; Luisi BF J Virol; 2021 Jun; 95(14):e0066321. PubMed ID: 33963053 [TBL] [Abstract][Full Text] [Related]
55. In Vitro Antiviral Activity of Nordihydroguaiaretic Acid against SARS-CoV-2. Villalobos-Sánchez E; García-Ruiz D; Camacho-Villegas TA; Canales-Aguirre AA; Gutiérrez-Ortega A; Muñoz-Medina JE; Elizondo-Quiroga DE Viruses; 2023 May; 15(5):. PubMed ID: 37243241 [TBL] [Abstract][Full Text] [Related]
56. Characterising proteolysis during SARS-CoV-2 infection identifies viral cleavage sites and cellular targets with therapeutic potential. Meyer B; Chiaravalli J; Gellenoncourt S; Brownridge P; Bryne DP; Daly LA; Grauslys A; Walter M; Agou F; Chakrabarti LA; Craik CS; Eyers CE; Eyers PA; Gambin Y; Jones AR; Sierecki E; Verdin E; Vignuzzi M; Emmott E Nat Commun; 2021 Sep; 12(1):5553. PubMed ID: 34548480 [TBL] [Abstract][Full Text] [Related]
57. Potential Therapeutic Effect of Micrornas in Extracellular Vesicles from Mesenchymal Stem Cells against SARS-CoV-2. Park JH; Choi Y; Lim CW; Park JM; Yu SH; Kim Y; Han HJ; Kim CH; Song YS; Kim C; Yu SR; Oh EY; Lee SM; Moon J Cells; 2021 Sep; 10(9):. PubMed ID: 34572043 [TBL] [Abstract][Full Text] [Related]
58. Prediction of putative potential siRNAs for inhibiting SARS-CoV-2 strains, including variants of concern and interest. Saba AA; Adiba M; Chakraborty S; Nabi AN Future Microbiol; 2022 Apr; 17():449-463. PubMed ID: 35285248 [No Abstract] [Full Text] [Related]
59. Significant Broad-Spectrum Antiviral Activity of Bi121 against Different Variants of SARS-CoV-2. Subhadra B; Agrawal R; Pal VK; Chenine AL; Mattathil JG; Singh A Viruses; 2023 May; 15(6):. PubMed ID: 37376598 [TBL] [Abstract][Full Text] [Related]
60. Silencing SARS-CoV Spike protein expression in cultured cells by RNA interference. Zhang Y; Li T; Fu L; Yu C; Li Y; Xu X; Wang Y; Ning H; Zhang S; Chen W; Babiuk LA; Chang Z FEBS Lett; 2004 Feb; 560(1-3):141-6. PubMed ID: 14988013 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]