BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34696583)

  • 1. Adhesive-Based Fabrication Technique for Culture of Lung Airway Epithelial Cells with Applications in Cell Patterning and Microfluidics.
    Dabaghi M; Tiessen N; Cao Q; Chandiramohan A; Saraei N; Kim Y; Gupta T; Selvaganapathy PR; Hirota JA
    ACS Biomater Sci Eng; 2021 Nov; 7(11):5301-5314. PubMed ID: 34696583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasma free reversible and irreversible microfluidic bonding.
    Chu M; Nguyen TT; Lee EK; Morival JL; Khine M
    Lab Chip; 2017 Jan; 17(2):267-273. PubMed ID: 27990540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems.
    Kratz SRA; Eilenberger C; Schuller P; Bachmann B; Spitz S; Ertl P; Rothbauer M
    Sci Rep; 2019 Jun; 9(1):9287. PubMed ID: 31243326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human Lung Small Airway-on-a-Chip Protocol.
    Benam KH; Mazur M; Choe Y; Ferrante TC; Novak R; Ingber DE
    Methods Mol Biol; 2017; 1612():345-365. PubMed ID: 28634955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double-Sided Tape in Microfluidics: A Cost-Effective Method in Device Fabrication.
    Smith S; Sypabekova M; Kim S
    Biosensors (Basel); 2024 May; 14(5):. PubMed ID: 38785723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-a-Chip-Based Sensitive Detection of Drug-Induced Apoptosis in Polarized Gastric Epithelial Cells.
    Bakhchova L; Jantaree P; Gupta A; Isermann B; Steinmann U; Naumann M
    ACS Biomater Sci Eng; 2021 Dec; 7(12):5474-5483. PubMed ID: 34704732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inkjet printing of UV-curable adhesive and dielectric inks for microfluidic devices.
    Hamad EM; Bilatto SE; Adly NY; Correa DS; Wolfrum B; Schöning MJ; Offenhäusser A; Yakushenko A
    Lab Chip; 2016 Jan; 16(1):70-4. PubMed ID: 26627046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Full-wafer in-situ fabrication and packaging of microfluidic flow cytometer with photo-patternable adhesive polymers.
    de Wijs K; Liu C; Majeed B; Jans K; O'Callaghan JM; Loo J; Sohn E; Peeters S; Van Roosbroeck R; Miyazaki T; Hoshiko K; Nishimura I; Hieda K; Lagae L
    Biomed Microdevices; 2017 Nov; 20(1):2. PubMed ID: 29159519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Piezoresistive Conductive Microfluidic Membranes for Low-Cost On-Chip Pressure and Flow Sensing.
    Islam MN; Doria SM; Fu X; Gagnon ZR
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of Three-dimensional Paper-based Microfluidic Devices for Immunoassays.
    Fernandes SC; Wilson DJ; Mace CR
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28362396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polydimethylsiloxane SlipChip for mammalian cell culture applications.
    Chang CW; Peng CC; Liao WH; Tung YC
    Analyst; 2015 Nov; 140(21):7355-65. PubMed ID: 26381390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Adhesive Patterning to Construct 3D Paper Microfluidic Devices.
    Kalish B; Tsutsui H
    J Vis Exp; 2016 Apr; (110):e53805. PubMed ID: 27077551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rapid co-culture stamping device for studying intercellular communication.
    Hassanzadeh-Barforoushi A; Shemesh J; Farbehi N; Asadnia M; Yeoh GH; Harvey RP; Nordon RE; Warkiani ME
    Sci Rep; 2016 Oct; 6():35618. PubMed ID: 27752145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated Addressable Microfluidic Device for Minimally Disruptive Manipulation of Cells and Fluids within Living Cultures.
    Tong A; Pham QL; Shah V; Naik A; Abatemarco P; Voronov R
    ACS Biomater Sci Eng; 2020 Mar; 6(3):1809-1820. PubMed ID: 33455370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of an Adhesive Film-Based Microfluidic Device for Alginate Hydrogel-Based Cell Encapsulation.
    Enck K; Rajan SP; Aleman J; Castagno S; Long E; Khalil F; Hall AR; Opara EC
    Ann Biomed Eng; 2020 Mar; 48(3):1103-1111. PubMed ID: 31933001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of a Simplified Three-Dimensional Skin-on-a-chip Model in a Micromachined Microfluidic Platform.
    Risueño I; Valencia L; Holgado M; Jorcano JL; Velasco D
    J Vis Exp; 2021 May; (171):. PubMed ID: 34057438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions.
    Humayun M; Chow CW; Young EWK
    Lab Chip; 2018 May; 18(9):1298-1309. PubMed ID: 29651473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nano-liter perfusion microfluidic device made entirely by two-photon polymerization for dynamic cell culture with easy cell recovery.
    McLennan HJ; Blanch AJ; Wallace SJ; Ritter LJ; Heinrich SL; Gardner DK; Dunning KR; Gauvin MJ; Love AK; Thompson JG
    Sci Rep; 2023 Jan; 13(1):562. PubMed ID: 36631601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid Prototyping of Multilayer Microphysiological Systems.
    Hosic S; Bindas AJ; Puzan ML; Lake W; Soucy JR; Zhou F; Koppes RA; Breault DT; Murthy SK; Koppes AN
    ACS Biomater Sci Eng; 2021 Jul; 7(7):2949-2963. PubMed ID: 34275297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and Structural Evaluation of Epithelial Cell Monolayers in a Physiologically Sized Microfluidic Culture Device.
    Damle EB; Yamaguchi E; Yao JE; Gaver DP
    J Vis Exp; 2022 Jul; (185):. PubMed ID: 35829646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.