These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34696583)

  • 21. Rapid prototyping of robust and versatile microfluidic components using adhesive transfer tapes.
    Nath P; Fung D; Kunde YA; Zeytun A; Branch B; Goddard G
    Lab Chip; 2010 Sep; 10(17):2286-91. PubMed ID: 20593077
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On chip porous polymer membranes for integration of gastrointestinal tract epithelium with microfluidic 'body-on-a-chip' devices.
    Esch MB; Sung JH; Yang J; Yu C; Yu J; March JC; Shuler ML
    Biomed Microdevices; 2012 Oct; 14(5):895-906. PubMed ID: 22847474
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic Platform for the Long-Term On-Chip Cultivation of Mammalian Cells for Lab-On-A-Chip Applications.
    Bunge F; Driesche SVD; Vellekoop MJ
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28698531
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid Prototyping of Thermoplastic Microfluidic 3D Cell Culture Devices by Creating Regional Hydrophilicity Discrepancy.
    Bai H; Olson KNP; Pan M; Marshall T; Singh H; Ma J; Gilbride P; Yuan YC; McCormack J; Si L; Maharjan S; Huang D; Qian X; Livermore C; Zhang YS; Xie X
    Adv Sci (Weinh); 2024 Feb; 11(7):e2304332. PubMed ID: 38032118
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication and Use of a Pumpless Microfluidic Lymphatic Vessel Chip.
    Fathi P; Esch MB
    Methods Mol Biol; 2022; 2373():177-199. PubMed ID: 34520013
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intestinal Epithelium Tubules on a Chip.
    Kosim K; Schilt I; Lanz HL; Vulto P; Kurek D
    Methods Mol Biol; 2022; 2373():87-105. PubMed ID: 34520008
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adhesive Tape Microfluidics with an Autofocusing Module That Incorporates CRISPR Interference: Applications to Long-Term Bacterial Antibiotic Studies.
    Kong T; Backes N; Kalwa U; Legner C; Phillips GJ; Pandey S
    ACS Sens; 2019 Oct; 4(10):2638-2645. PubMed ID: 31583880
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication and laser patterning of polystyrene optical oxygen sensor films for lab-on-a-chip applications.
    Grist SM; Oyunerdene N; Flueckiger J; Kim J; Wong PC; Chrostowski L; Cheung KC
    Analyst; 2014 Nov; 139(22):5718-27. PubMed ID: 25230092
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of Microfluidic Dilution Network-Based System for Lab-on-a-Chip Microalgal Bioassays.
    Zheng G; Lu L; Yang Y; Wei J; Han B; Zhang Q; Wang Y
    Anal Chem; 2018 Nov; 90(22):13280-13289. PubMed ID: 30345743
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasma-enhanced protein patterning in a microfluidic compartmentalized platform for multi-organs-on-chip: a liver-tumor model.
    Ferrari E; Ugolini GS; Piutti C; Marzorati S; Rasponi M
    Biomed Mater; 2021 Jun; 16(4):. PubMed ID: 34030149
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A hybrid fluorescent nanofiber membrane integrated with microfluidic chips towards lung-on-a-chip applications.
    Kanabekova P; Dauletkanov B; Bekezhankyzy Z; Toktarkan S; Martin A; Pham TT; Kostas K; Kulsharova G
    Lab Chip; 2024 Jan; 24(2):224-233. PubMed ID: 38053518
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A polyp-on-chip for coral long-term culture.
    Pang AP; Luo Y; He C; Lu Z; Lu X
    Sci Rep; 2020 Apr; 10(1):6964. PubMed ID: 32332805
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.
    Mark D; Haeberle S; Roth G; von Stetten F; Zengerle R
    Chem Soc Rev; 2010 Mar; 39(3):1153-82. PubMed ID: 20179830
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microfluidic Migration and Wound Healing Assay Based on Mechanically Induced Injuries of Defined and Highly Reproducible Areas.
    Sticker D; Lechner S; Jungreuthmayer C; Zanghellini J; Ertl P
    Anal Chem; 2017 Feb; 89(4):2326-2333. PubMed ID: 28192955
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Novel Microfluidic Platform for Biomechano-Stimulations on a Chip.
    Prevedello L; Michielin F; Balcon M; Savio E; Pavan P; Elvassore N
    Ann Biomed Eng; 2019 Jan; 47(1):231-242. PubMed ID: 30218223
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomedical microfluidic devices by using low-cost fabrication techniques: A review.
    Faustino V; Catarino SO; Lima R; Minas G
    J Biomech; 2016 Jul; 49(11):2280-2292. PubMed ID: 26671220
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid Manufacturing of Multilayered Microfluidic Devices for Organ on a Chip Applications.
    Paoli R; Di Giuseppe D; Badiola-Mateos M; Martinelli E; Lopez-Martinez MJ; Samitier J
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33669434
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visual Estimation of Bacterial Growth Level in Microfluidic Culture Systems.
    Kim K; Kim S; Jeon JS
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29401651
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polymer Microfluidics: Simple, Low-Cost Fabrication Process Bridging Academic Lab Research to Commercialized Production.
    Tsao CW
    Micromachines (Basel); 2016 Dec; 7(12):. PubMed ID: 30404397
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.