These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 3469676)

  • 1. Depolarization-induced Ca2+ increase in isolated neurosecretory nerve terminals measured with fura-2.
    Brethes D; Dayanithi G; Letellier L; Nordmann JJ
    Proc Natl Acad Sci U S A; 1987 Mar; 84(5):1439-43. PubMed ID: 3469676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of membrane depolarization on intracellular calcium in single nerve terminals.
    Stuenkel EL
    Brain Res; 1990 Oct; 529(1-2):96-101. PubMed ID: 2282508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secretion from rat neurohypophysial nerve terminals (neurosecretosomes) rapidly inactivates despite continued elevation of intracellular Ca2+.
    Fatatis A; Holtzclaw L; Payza K; Russell JT
    Brain Res; 1992 Mar; 574(1-2):33-41. PubMed ID: 1638405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of neurohypophysial vasopressin release by Ca2+ influx and intracellular Ca2+ accumulation in the rat.
    Shibuki K
    J Physiol; 1990 Mar; 422():321-31. PubMed ID: 2352182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relationship between the membrane potential of neurosecretory nerve endings, as measured by a voltage-sensitive dye, and the release of neurohypophysial hormones.
    Nordmann JJ; Desmazes JP; Georgescauld D
    Neuroscience; 1982 Mar; 7(3):731-7. PubMed ID: 6280104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Action potential broadening and frequency-dependent facilitation of calcium signals in pituitary nerve terminals.
    Jackson MB; Konnerth A; Augustine GJ
    Proc Natl Acad Sci U S A; 1991 Jan; 88(2):380-4. PubMed ID: 1988937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potassium depolarization elevates cytosolic free calcium concentration in rat anterior pituitary cells through 1,4-dihydropyridine-sensitive, omega-conotoxin-insensitive calcium channels.
    Meier K; Knepel W; Schöfl C
    Endocrinology; 1988 Jun; 122(6):2764-70. PubMed ID: 2453348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of intracellular calcium and calcium buffering properties of rat isolated neurohypophysial nerve endings.
    Stuenkel EL
    J Physiol; 1994 Dec; 481 ( Pt 2)(Pt 2):251-71. PubMed ID: 7738824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hormone release from isolated nerve endings of the rat neurohypophysis.
    Cazalis M; Dayanithi G; Nordmann JJ
    J Physiol; 1987 Sep; 390():55-70. PubMed ID: 2450999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular potassium changes in the rat neurohypophysis during activation of the magnocellular neurosecretory system.
    Leng G; Shibuki K
    J Physiol; 1987 Nov; 392():97-111. PubMed ID: 2451734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular free calcium concentration in rat anterior pituitary cells as indicated by fura-2: effect of arginine-vasopressin.
    Knepel W; Schöfl C
    Naunyn Schmiedebergs Arch Pharmacol; 1987 Sep; 336(3):321-6. PubMed ID: 3683598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the Ca2+ concentration in purified nerve terminals: relationship between Ca2+ homeostasis and synaptosomal preparation.
    Verhage M; Besselsen E; Lopes Da Silva FH; Ghijsen WE
    J Neurochem; 1988 Dec; 51(6):1667-74. PubMed ID: 3183656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium-induced calcium increase in secretory vesicles of permeabilized rat neurohypophysial nerve terminals.
    Troadec JD; Thirion S; Laugier JP; Nicaise G
    Biol Cell; 1998 Jul; 90(4):339-47. PubMed ID: 9800351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging of cytosolic Ca2+ transients arising from Ca2+ stores and Ca2+ channels in sympathetic neurons.
    Lipscombe D; Madison DV; Poenie M; Reuter H; Tsien RW; Tsien RY
    Neuron; 1988 Jul; 1(5):355-65. PubMed ID: 2856095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depolarization, intracellular calcium and exocytosis in single vertebrate nerve endings.
    Lindau M; Stuenkel EL; Nordmann JJ
    Biophys J; 1992 Jan; 61(1):19-30. PubMed ID: 1540689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular acidification induced by membrane depolarization in rat hippocampal slices: roles of intracellular Ca2+ and glycolysis.
    Zhan RZ; Fujiwara N; Tanaka E; Shimoji K
    Brain Res; 1998 Jan; 780(1):86-94. PubMed ID: 9473603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Measurement of intracellular free Ca2+ concentration in dissociated rat brain cells using Fura-2/AM].
    Li M; Wang JF; Han JS; Zhang JT
    Yao Xue Xue Bao; 1991; 26(12):890-4. PubMed ID: 1823987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Olfactory neurons exhibit heterogeneity in depolarization-induced calcium changes.
    Restrepo D; Teeter JH
    Am J Physiol; 1990 Jun; 258(6 Pt 1):C1051-61. PubMed ID: 2163197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca2+ clearance mechanisms in neurohypophysial terminals of the rat.
    Sasaki N; Dayanithi G; Shibuya I
    Cell Calcium; 2005 Jan; 37(1):45-56. PubMed ID: 15541463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological localization of an agonist-sensitive pool of Ca2+ in parotid acinar cells.
    Foskett JK; Gunter-Smith PJ; Melvin JE; Turner RJ
    Proc Natl Acad Sci U S A; 1989 Jan; 86(1):167-71. PubMed ID: 2492098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.