These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 34697325)
21. Heat causes oligomeric disassembly and increases the chaperone activity of small heat shock proteins from sugarcane. Tiroli-Cepeda AO; Ramos CH Plant Physiol Biochem; 2010; 48(2-3):108-16. PubMed ID: 20137963 [TBL] [Abstract][Full Text] [Related]
22. Importance of a potential salt bridge and hydrophobic core in the function and oligomerization of a small heat shock protein. Wen Z; Wang Y; Xu X; Yang B; Li W; Xie M Protein Pept Lett; 2010 Jun; 17(6):751-8. PubMed ID: 20015024 [TBL] [Abstract][Full Text] [Related]
23. The function of the beta3 interactive domain in the small heat shock protein and molecular chaperone, human alphaB crystallin. Ghosh JG; Estrada MR; Houck SA; Clark JI Cell Stress Chaperones; 2006; 11(2):187-97. PubMed ID: 16817325 [TBL] [Abstract][Full Text] [Related]
24. Diversity, structure, and expression of the gene for p26, a small heat shock protein from Artemia. Qiu Z; Bossier P; Wang X; Bojikova-Fournier S; MacRae TH Genomics; 2006 Aug; 88(2):230-40. PubMed ID: 16571370 [TBL] [Abstract][Full Text] [Related]
25. Two Bacterial Small Heat Shock Proteins, IbpA and IbpB, Form a Functional Heterodimer. Piróg A; Cantini F; Nierzwicki Ł; Obuchowski I; Tomiczek B; Czub J; Liberek K J Mol Biol; 2021 Jul; 433(15):167054. PubMed ID: 34022209 [TBL] [Abstract][Full Text] [Related]
26. Quaternary dynamics and plasticity underlie small heat shock protein chaperone function. Stengel F; Baldwin AJ; Painter AJ; Jaya N; Basha E; Kay LE; Vierling E; Robinson CV; Benesch JL Proc Natl Acad Sci U S A; 2010 Feb; 107(5):2007-12. PubMed ID: 20133845 [TBL] [Abstract][Full Text] [Related]
27. Structural basis of substrate recognition and thermal protection by a small heat shock protein. Yu C; Leung SKP; Zhang W; Lai LTF; Chan YK; Wong MC; Benlekbir S; Cui Y; Jiang L; Lau WCY Nat Commun; 2021 May; 12(1):3007. PubMed ID: 34021140 [TBL] [Abstract][Full Text] [Related]
28. Structural model of dodecameric heat-shock protein Hsp21: Flexible N-terminal arms interact with client proteins while C-terminal tails maintain the dodecamer and chaperone activity. Rutsdottir G; Härmark J; Weide Y; Hebert H; Rasmussen MI; Wernersson S; Respondek M; Akke M; Højrup P; Koeck PJB; Söderberg CAG; Emanuelsson C J Biol Chem; 2017 May; 292(19):8103-8121. PubMed ID: 28325834 [TBL] [Abstract][Full Text] [Related]
29. Small heat shock proteins and α-crystallins: dynamic proteins with flexible functions. Basha E; O'Neill H; Vierling E Trends Biochem Sci; 2012 Mar; 37(3):106-17. PubMed ID: 22177323 [TBL] [Abstract][Full Text] [Related]
30. Structure, stability, and chaperone function of alphaA-crystallin: role of N-terminal region. Kundu M; Sen PC; Das KP Biopolymers; 2007 Jun; 86(3):177-92. PubMed ID: 17345631 [TBL] [Abstract][Full Text] [Related]
31. Specific sequences in the N-terminal domain of human small heat-shock protein HSPB6 dictate preferential hetero-oligomerization with the orthologue HSPB1. Heirbaut M; Lermyte F; Martin EM; Beelen S; Sobott F; Strelkov SV; Weeks SD J Biol Chem; 2017 Jun; 292(24):9944-9957. PubMed ID: 28487364 [TBL] [Abstract][Full Text] [Related]
32. Chaperone function of two small heat shock proteins from maize. Klein RD; Chidawanyika T; Tims HS; Meulia T; Bouchard RA; Pett VB Plant Sci; 2014 May; 221-222():48-58. PubMed ID: 24656335 [TBL] [Abstract][Full Text] [Related]
33. Multiple oligomeric structures of a bacterial small heat shock protein. Mani N; Bhandari S; Moreno R; Hu L; Prasad BVV; Suguna K Sci Rep; 2016 Apr; 6():24019. PubMed ID: 27053150 [TBL] [Abstract][Full Text] [Related]
34. One size does not fit all: the oligomeric states of αB crystallin. Delbecq SP; Klevit RE FEBS Lett; 2013 Apr; 587(8):1073-80. PubMed ID: 23340341 [TBL] [Abstract][Full Text] [Related]
35. Structure and properties of chimeric small heat shock proteins containing yellow fluorescent protein attached to their C-terminal ends. Datskevich PN; Gusev NB Cell Stress Chaperones; 2014 Jul; 19(4):507-18. PubMed ID: 24282123 [TBL] [Abstract][Full Text] [Related]
36. Silencing of class I small heat shock proteins affects seed-related attributes and thermotolerance in rice seedlings. Sarkar NK; Kotak S; Agarwal M; Kim YK; Grover A Planta; 2019 Dec; 251(1):26. PubMed ID: 31797121 [TBL] [Abstract][Full Text] [Related]
37. A Mechanism of Subunit Recruitment in Human Small Heat Shock Protein Oligomers. Delbecq SP; Rosenbaum JC; Klevit RE Biochemistry; 2015 Jul; 54(28):4276-84. PubMed ID: 26098708 [TBL] [Abstract][Full Text] [Related]
38. Wrapping the alpha-crystallin domain fold in a chaperone assembly. Stamler R; Kappé G; Boelens W; Slingsby C J Mol Biol; 2005 Oct; 353(1):68-79. PubMed ID: 16165157 [TBL] [Abstract][Full Text] [Related]
39. Some like it hot: the structure and function of small heat-shock proteins. Haslbeck M; Franzmann T; Weinfurtner D; Buchner J Nat Struct Mol Biol; 2005 Oct; 12(10):842-6. PubMed ID: 16205709 [TBL] [Abstract][Full Text] [Related]
40. Nature's molecular sponges: small heat shock proteins grow into their chaperone roles. Eyles SJ; Gierasch LM Proc Natl Acad Sci U S A; 2010 Feb; 107(7):2727-8. PubMed ID: 20133678 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]