These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 34698155)

  • 61. Stability mechanism of SiO
    Liu N; Chen Y; Jiang W; Chen X; Du H; Xu H; Zhang Y; Zhao H; Ju B
    J Mol Model; 2022 Aug; 28(9):264. PubMed ID: 35986785
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A Comparative Study on CO
    Liang M; Zhao X; Wang J; Feng Y
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985539
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Tuning Nanoparticle Surface Chemistry and Interfacial Properties for Highly Stable Nitrogen-In-Brine Foams.
    Alzobaidi S; Da C; Wu P; Zhang X; Rabat-Torki NJ; Harris JM; Hackbarth JE; Lu C; Hu D; Johnston KP
    Langmuir; 2021 May; 37(17):5408-5423. PubMed ID: 33881323
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Surfactant micelles containing solubilized oil decrease foam film thickness stability.
    Lee J; Nikolov A; Wasan D
    J Colloid Interface Sci; 2014 Feb; 415():18-25. PubMed ID: 24267325
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Foaming properties of monoglycerol fatty acid esters in nonpolar oil systems.
    Shrestha LK; Aramaki K; Kato H; Takase Y; Kunieda H
    Langmuir; 2006 Sep; 22(20):8337-45. PubMed ID: 16981746
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The degradation of xanthan gum in ionic and non-ionic denaturants studied by rheology and molecular dynamics simulation.
    Nnyigide OS; Nnyigide TO; Hyun K
    Carbohydr Polym; 2021 Jan; 251():117061. PubMed ID: 33142613
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Comparative study on interfacial and foaming properties of glycolipids in relation to the gas applied for foam generation.
    Hollenbach R; Oeppling S; Delavault A; Völp AR; Willenbacher N; Rudat J; Ochsenreither K; Syldatk C
    RSC Adv; 2021 Oct; 11(54):34235-34244. PubMed ID: 35497276
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Evaluation of Processing Conditions and Hydrocolloid Addition on Functional Properties of Aquafaba.
    Crawford K; Tyl C; Kerr W
    Foods; 2023 Feb; 12(4):. PubMed ID: 36832848
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Foam drainage in the presence of solid particles.
    Wang J; Nguyen AV
    Soft Matter; 2016 Mar; 12(12):3004-12. PubMed ID: 26877265
    [TBL] [Abstract][Full Text] [Related]  

  • 70. On how hydrogen bonds affect foam stability.
    Stubenrauch C; Hamann M; Preisig N; Chauhan V; Bordes R
    Adv Colloid Interface Sci; 2017 Sep; 247():435-443. PubMed ID: 28347413
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effect of nanoparticle on rheological properties of surfactant-based nanofluid for effective carbon utilization: capturing and storage prospects.
    Kumar RS; Goswami R; Chaturvedi KR; Sharma T
    Environ Sci Pollut Res Int; 2021 Oct; 28(38):53578-53593. PubMed ID: 34036498
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Aqueous foams stabilized by in situ surface activation of CaCO3 nanoparticles via adsorption of anionic surfactant.
    Cui ZG; Cui YZ; Cui CF; Chen Z; Binks BP
    Langmuir; 2010 Aug; 26(15):12567-74. PubMed ID: 20608686
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Composition of Xanthan gum produced by Xanthomonas campestris using produced water from a carbonated oil field through Raman spectroscopy.
    Sampaio ICF; Crugeira PJL; Soares LGP; Dos Santos JN; de Almeida PF; Pinheiro ALB; Silveira L
    J Photochem Photobiol B; 2020 Dec; 213():112052. PubMed ID: 33074141
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effective exploitation of anionic, nonionic, and nanoparticle-stabilized surfactant foams for petroleum hydrocarbon contaminated soil remediation.
    Ali N; Bilal M; Khan A; Ali F; Iqbal HMN
    Sci Total Environ; 2020 Feb; 704():135391. PubMed ID: 31806317
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Xanthan gum assisted foam fractionation for the recovery of casein from the dairy wastewater.
    Wu Z; Yin H; Liu W; Huang D; Hu N; Yang C; Zhao X
    Prep Biochem Biotechnol; 2020; 50(1):37-46. PubMed ID: 31453755
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Morphology and stability of CO2-in-water foams with nonionic hydrocarbon surfactants.
    Adkins SS; Chen X; Chan I; Torino E; Nguyen QP; Sanders AW; Johnston KP
    Langmuir; 2010 Apr; 26(8):5335-48. PubMed ID: 20345107
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Understanding the physics of hydrocolloids interaction using rheological, thermodynamic and functional properties: A case study on xanthan gum-cress seed gum blend.
    Razavi SMA; Alghooneh A
    Int J Biol Macromol; 2020 May; 151():1139-1153. PubMed ID: 31747568
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Improvement of Foaming Ability of Surfactant Solutions by Water-Soluble Polymers: Experiment and Molecular Dynamics Simulation.
    Xu C; Wang H; Wang D; Zhu X; Zhu Y; Bai X; Yang Q
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32143492
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Condensate Oil-Tolerant Foams Stabilized by an Anionic-Sulfobetaine Surfactant Mixture.
    Qu C; Wang J; Yin H; Lu G; Li Z; Feng Y
    ACS Omega; 2019 Jan; 4(1):1738-1747. PubMed ID: 31459431
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Preparation of superabsorbent eco-friendly semi-interpenetrating network based on cross-linked poly acrylic acid/xanthan gum/graphene oxide (PAA/XG/GO): Characterization and dye removal ability.
    Hosseini SM; Shahrousvand M; Shojaei S; Khonakdar HA; Asefnejad A; Goodarzi V
    Int J Biol Macromol; 2020 Jun; 152():884-893. PubMed ID: 32057884
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.