BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34698566)

  • 21. Polycystic liver: automatic segmentation using deep learning on CT is faster and as accurate compared to manual segmentation.
    Cayot B; Milot L; Nempont O; Vlachomitrou AS; Langlois-Jacques C; Dumortier J; Boillot O; Arnaud K; Barten TRM; Drenth JPH; Valette PJ
    Eur Radiol; 2022 Jul; 32(7):4780-4790. PubMed ID: 35142898
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automated segmentation and quantification of aortic calcification at abdominal CT: application of a deep learning-based algorithm to a longitudinal screening cohort.
    Graffy PM; Liu J; O'Connor S; Summers RM; Pickhardt PJ
    Abdom Radiol (NY); 2019 Aug; 44(8):2921-2928. PubMed ID: 30976827
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interstitial Lung Abnormalities at CT in the Korean National Lung Cancer Screening Program: Prevalence and Deep Learning-based Texture Analysis.
    Chae KJ; Lim S; Seo JB; Hwang HJ; Choi H; Lynch D; Jin GY
    Radiology; 2023 May; 307(4):e222828. PubMed ID: 37097142
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparing fully automated AI body composition measures derived from thin and thick slice CT image data.
    Lee MH; Liu D; Garrett JW; Perez A; Zea R; Summers RM; Pickhardt PJ
    Abdom Radiol (NY); 2024 Mar; 49(3):985-996. PubMed ID: 38158424
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative radiology: automated CT liver volumetry compared with interactive volumetry and manual volumetry.
    Suzuki K; Epstein ML; Kohlbrenner R; Garg S; Hori M; Oto A; Baron RL
    AJR Am J Roentgenol; 2011 Oct; 197(4):W706-12. PubMed ID: 21940543
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of MRI- and CT-based semiautomated liver segmentation: a validation study.
    Gotra A; Chartrand G; Vu KN; Vandenbroucke-Menu F; Massicotte-Tisluck K; de Guise JA; Tang A
    Abdom Radiol (NY); 2017 Feb; 42(2):478-489. PubMed ID: 27680014
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fully automated whole-liver volume quantification on CT-image data: Comparison with manual volumetry using enhanced and unenhanced images as well as two different radiation dose levels and two reconstruction kernels.
    Hagen F; Mair A; Bitzer M; Bösmüller H; Horger M
    PLoS One; 2021; 16(8):e0255374. PubMed ID: 34339472
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fully Automated Deep Learning Tool for Sarcopenia Assessment on CT: L1 Versus L3 Vertebral Level Muscle Measurements for Opportunistic Prediction of Adverse Clinical Outcomes.
    Pickhardt PJ; Perez AA; Garrett JW; Graffy PM; Zea R; Summers RM
    AJR Am J Roentgenol; 2022 Jan; 218(1):124-131. PubMed ID: 34406056
    [No Abstract]   [Full Text] [Related]  

  • 29. Atherosclerotic Plaque Burden on Abdominal CT: Automated Assessment With Deep Learning on Noncontrast and Contrast-enhanced Scans.
    Summers RM; Elton DC; Lee S; Zhu Y; Liu J; Bagheri M; Sandfort V; Grayson PC; Mehta NN; Pinto PA; Linehan WM; Perez AA; Graffy PM; O'Connor SD; Pickhardt PJ
    Acad Radiol; 2021 Nov; 28(11):1491-1499. PubMed ID: 32958429
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Validation of a semiautomated liver segmentation method using CT for accurate volumetry.
    Gotra A; Chartrand G; Massicotte-Tisluck K; Morin-Roy F; Vandenbroucke-Menu F; de Guise JA; Tang A
    Acad Radiol; 2015 Sep; 22(9):1088-98. PubMed ID: 25907454
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deep Learning Reconstruction Shows Better Lung Nodule Detection for Ultra-Low-Dose Chest CT.
    Jiang B; Li N; Shi X; Zhang S; Li J; de Bock GH; Vliegenthart R; Xie X
    Radiology; 2022 Apr; 303(1):202-212. PubMed ID: 35040674
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pancreatic Cancer Detection on CT Scans with Deep Learning: A Nationwide Population-based Study.
    Chen PT; Wu T; Wang P; Chang D; Liu KL; Wu MS; Roth HR; Lee PC; Liao WC; Wang W
    Radiology; 2023 Jan; 306(1):172-182. PubMed ID: 36098642
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep learning for segmentation of 49 selected bones in CT scans: First step in automated PET/CT-based 3D quantification of skeletal metastases.
    Lindgren Belal S; Sadik M; Kaboteh R; Enqvist O; Ulén J; Poulsen MH; Simonsen J; Høilund-Carlsen PF; Edenbrandt L; Trägårdh E
    Eur J Radiol; 2019 Apr; 113():89-95. PubMed ID: 30927965
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of semi-automatic and deep learning-based automatic methods for liver segmentation in living liver transplant donors.
    Kavur AE; Gezer NS; Barış M; Şahin Y; Özkan S; Baydar B; Yüksel U; Kılıkçıer Ç; Olut Ş; Bozdağı Akar G; Ünal G; Dicle O; Selver MA
    Diagn Interv Radiol; 2020 Jan; 26(1):11-21. PubMed ID: 31904568
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computed tomography liver volumetry using 3-dimensional image data in living donor liver transplantation: effects of the slice thickness on the volume calculation.
    Hori M; Suzuki K; Epstein ML; Baron RL
    Liver Transpl; 2011 Dec; 17(12):1427-36. PubMed ID: 21850689
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automated Whole-Liver MRI Segmentation to Assess Steatosis and Iron Quantification in Chronic Liver Disease.
    Martí-Aguado D; Jiménez-Pastor A; Alberich-Bayarri Á; Rodríguez-Ortega A; Alfaro-Cervello C; Mestre-Alagarda C; Bauza M; Gallén-Peris A; Valero-Pérez E; Ballester MP; Gimeno-Torres M; Pérez-Girbés A; Benlloch S; Pérez-Rojas J; Puglia V; Ferrández A; Aguilera V; Escudero-García D; Serra MA; Martí-Bonmatí L
    Radiology; 2022 Feb; 302(2):345-354. PubMed ID: 34783592
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A pilot study of deep learning-based CT volumetry for traumatic hemothorax.
    Dreizin D; Nixon B; Hu J; Albert B; Yan C; Yang G; Chen H; Liang Y; Kim N; Jeudy J; Li G; Smith EB; Unberath M
    Emerg Radiol; 2022 Dec; 29(6):995-1002. PubMed ID: 35971025
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep learning-based quantitative visualization and measurement of extraperitoneal hematoma volumes in patients with pelvic fractures: Potential role in personalized forecasting and decision support.
    Dreizin D; Zhou Y; Chen T; Li G; Yuille AL; McLenithan A; Morrison JJ
    J Trauma Acute Care Surg; 2020 Mar; 88(3):425-433. PubMed ID: 32107356
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Performance of a Deep Learning Algorithm for Automated Segmentation and Quantification of Traumatic Pelvic Hematomas on CT.
    Dreizin D; Zhou Y; Zhang Y; Tirada N; Yuille AL
    J Digit Imaging; 2020 Feb; 33(1):243-251. PubMed ID: 31172331
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Semiautomated thyroid volumetry using 3D CT: prospective comparison with measurements obtained using 2D ultrasound, 2D CT, and water displacement method of specimen.
    Lee SJ; Chong S; Kang KH; Hur J; Hong BW; Kim HJ; Kim SJ
    AJR Am J Roentgenol; 2014 Nov; 203(5):W525-32. PubMed ID: 25341167
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.